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INTRODUCTION 

The ultimate goal of this project is to combine features derived from ultrasound (US) images, US 
radio frequency (RF) data, tissue elasticity imaging, and clinical data such as PSA into a 
computerized system for displaying prostate images that indicate probable location(s) of cancer. 
Each of these different classes of features has been shown to be useful for prostate cancer 
detection. By combining those features in each class that perform best in a set of test cases, we 
hope to develop an accurate tool for detecting regions on the ultrasound image that a high 
probability for cancer. Eventually we hope these techniques will be used to rapidly identify high 
probability areas and mark them on the ultrasound image in real time or near real time. 

This project began by gathering RF data from in-vitro prostatectomy specimens in cross sectional 
planes 2mm apart using a linear array transducer. These data are used to calculate RF features 
such as power spectrum slope, and backscatter coefficient at each location in the gland. The data 
are also used to generate images and elastograms from which image texture features and tissue 
hardness features are computed. The features will be correlated with histology taken at the same 
tissue planes to determine which features and feature combinations most accurately predict the 
presence of cancer. The various image, hardness, and RF features will then be combined with 
prior probability information derived from an AFIP 3D model of prostate occurrence and with 
clinical PSA values to produce a system that can accurately identify the presence of prostate 
cancer using ultrasound data. 

After developing the techniques to perform identification of prostate cancer using the linear array 
scans, our plan is to migrate the technique to data from a curved array transducer and then finally 
to data from an endorectal prostate probe. We hope in the end to be able to demonstrate an in 
vitro system using an endorectal prostate probe that will be able to mark areas of high probability 
for cancer on each ultrasound image. This will prepare us for an in vivo study directed at 
developing an ultrasound system that can better direct biopsies of the prostate gland to areas of 
high likelihood for actual prostate cancer. 



RESEARCH ACTIVITIES AND PROGRESS 

Administrative Overview: 

Our efforts in the third year of the project have been focused on continuing the clinical data 
acquisition begun in June 1999, continuing to work with Mr. He, the graduate student to refine the 
software to compute the ultrasound based features, and on completing development of a system for 
correlating ultrasound features with pathology on "whole mount equivalent sections" made by 
reassembling pathology slide sections. We have succeeded in developing this system and 
preliminary results were reported in June 2001. 

The graduate student on the project, Mr. Xhe He continued working on the project and completed a 
usable version of software for ultrasound data analysis by May 2001. Preliminary analysis was 
carried out using this software and then Mr. He took some time out to write his masters thesis based 
on the work, which was completed in September 2001 and accepted by the graduate college in 
October 2001. Mr. He received his masters degree in October for the work. Training of Mr. He has 
continued with numerous software refinements currently underway. The main goal for the next 
version is to include elastographic features in the analysis and to modify the manner in which user 
selected regions of interest are selected. Mr. He has tentatively agreed to continue on in his studies 
towards a Ph.D., which means that he will continue to work on the prostate project. This eliminates 
the need to train a new graduate student. 

Development of a user-friendly interface for the software has consumed a significant amount of Mr. 
He's time forcing him to devote less time to the critical questions of ultrasonic feature computation 
and software testing. To assist with these software development issues, a programmer has been 
hired on a part time basis. Mr. Steven Felker, the programmer, has worked with the ultrasound 
research group as a senior computer science major and has developed considerable familiarity with 
Matlab programming. He will assist with file conversion software, and graphical user interface 
software development to allow Mr. He to focus more on feature computation and data fusion issues. 

The complex process of combining the quarter section pathology slide images into the equivalent of 
whole mount sections for comparison with the ultrasound images and data has been handled in the 
past year by the research assistant Gorana Skjlarevski. She was trained in this process by Dr. Mark 
Tuthill of the Department of Pathology and became quite proficient at scanning microscope slides, 
rearranging them, labeling the resultant image files in an organized way, and combining them into 
complete cross sectional images of the prostate gland. These cross sectional images were then 
placed into a database for use by the ultrasound analysis software developed by Mr. He. 
Unfortunately Ms. Skjlarevski left the project suddenly in June 2001 after her husband took a job in 
another city. This brought to a halt both ultrasound data acquisition and pathology image 
processing. 

A search for a replacement was instituted and in September 2001, Mr. Steven Knight was hired. 
The principal investigator trained Mr. Knight in the ultrasound data acquisition from prostatectomy 
specimens over a four-week period and Mr. Knight also received training from Dr. Tuthill on 



pathology image reassembly. Unfortunately, after the training period, Mr. Knight performed only 
two ultrasound acquisitions in two months and performed no pathology image assembly. It was 
clear that because of workload and personal problems that Mr. Knight could not perform the jobs 
expected of him so he was asked to resign in late November and tendered his resignation shortly 
thereafter. 

A search is underway for a replacement and during the interim period, the P.I. will perform 
ultrasound data acquisition and pathology image assembly as time permits. 

In summary, the first half of the year was very productive but work in the second half of the year 
was hampered by the loss of the laboratory assistant and the failure of her replacement to carry on 
the data acquisition/image processing work. Additional computer programming expertise has been 
hired to speed up software development and a search for a laboratory assistant continues. As we 
had several candidates for the job before selecting Mr. Knight, we are optimistic about hiring a new, 
more reliable, laboratory assistant in the very near future. 

RESEARCH PROGRESS 

Task 1 (Months 1-6): Collect RF data on 25 prostate glands with the linear array transducer. 
Develop a preliminary plan for data acquisition for tasks 5 and 7. 

This portion of the project was completed prior to the 1999 annual report and is outlined in that 
document. No further changes to data acquisition were made in the past year other than a 
reduction in the number of sutures used to mark the index slice of the ultrasound study. This 
change was done to reduce the amount of time that the specimen spent in the ultrasound lab prior 
to being received by pathology. 

Task 2 (months 1-6): Develop a methodology for registering optical pathology information with 
ultrasound data. 

The procedure outlined in the previous annual report was successfully implemented as outlined 
in the previous report with only minor modifications. The procedure now consists of the 
following steps: 

1. The prostatectomy specimen is fixed in formalin. 
2. The gland is sectioned every 2-3mm after coating the surface of the gland with inks of 

various colors to identify anterior and posterior surfaces 
3. Each 2-3mm thick whole cross section is divided into quarters. 
4. The quarters are labeled and embedded in paraffin 
5. The embedded quarters are sectioned and mounted onto glass slides 
6. The slides are stained and examined by the pathologist—Dr. Trainer 
7. Areas of cancer are marked on the slides in indelible ink 
8. The slides are digitized by placing them on a flatbed scanner and scanning at 300dpi. 

This produces pathology images of high enough resolution without producing 
unnecessarily large image files—see figure 1. 



9. The slide images (including identification labels indicating the original slice position and 
quarter) are imported into Adobe Photoshop and reassembled into complete cross 
sections ("whole mount equivalents"). 

10. The whole mount equivalent images are placed into a database on a shared disk drive for 
later comparison with ultrasound data. 

An example of a "whole mount equivalent" image assembled from quarter sections is shown in 
figure 2. 
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Figure 1. Scanned in images of the four quarters of a pathology slice before reassembly 
into a complete cross section. Areas of cancer are marked in with blue ink outlines. 
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Figure 2. Quarter sections reassembled into complete 
cross-section (whole mount equivalent). Cancer areas 
marked by blue lines 



A few modifications to the original procedure outlined in the prior report were made. No 
warping of pathology images was performed due to concerns by the pathologists that such a 
procedure might introduce undesirable distortions into the pathology data. Thus some of the 
whole mount equivalents have gaps where the quarter sections did not fit precisely with one 
another. This has not proved to be a problem for correlation with ultrasound data. When looking 
for benign or malignant areas, the gaps are simply avoided. Software to perform the selection a 
corresponding pathology whole mount equivalent image based on the registration scheme 
described in the 2000 report has been developed and successfully used. See task 4 description 
for further discussion. 

In Summary, a method for registration of histologic information with ultrasound raw data has 
been developed and is in use in other phases of the project. Task 2 is complete. 

Task 3 (months 1-6): Use digital database of prostate cancer rate developed at Georgetown 
University and AFIP to establish a probability map of prostate cancer in a 3D domain. 

The available pathology data from UVM have been transferred to Georgetown University for 
probability map creation. The creation of the probability map and 3D distribution mapping has 
been described in the previous report. Although the probability distribution map has not yet been 
created, it is not needed at this point since incorporation of prior probabilities is needed only in 
the final phases of UNKNOWN region of interest classification and we are still in the phase of 
computing features for KNOWN regions of interest to determine which features best 
discriminate cancer from benign tissue. 

Further work on 3D modeling at UVM has been put on hold pending hiring of a replacement for 
the research assistant. 

Task 4 (months 1-9): Software development. Adapt existing RF analysis software and 
incorporate texture analysis. Develop software to automatically calculate RF and texture features 
over multiple subregions in an image. 

Rather than adapt existing RF analysis software, it turned out to be more educational and 
expedient to develop new software based on MATLAB to compute both RF and Texture 
features. The previously reported user interface (figure 3) was completely revamped to give the 
user a way to process regions of interest selected from a pathology image. 



Figure 3. Example of the graphical user interface to be used for prostate 
ultrasound data processing. 
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This new software, which is designed to allow a user to identify a normal or cancerous area on 
the pathology image and find the corresponding region in the ultrasound data set, has been 
completed and used successfully to analyze ultrasound data. The software was developed in 
MATLAB with a Windows Graphical User Interface. To calculate RF or texture features the user 
selects the ultrasound data file that he/she wishes to use. The software automatically selects the 
pathology slice the most closely corresponds to the ultrasound data based on the slice correlation 
scheme as reported in the previous annual report. The user then adjusts the size of the pathology 
image to match the ultrasound image by drawing a box around the image of the prostate that 
touches the image of the gland on all four sides. The pathology image is then oriented to match 
the ultrasound data—this usually involves rotating the pathology image 180 degrees. The user 
then draws are region of interest on the pathology specimen and specifies whether it is a 
cancerous or benign region. The software automatically finds the corresponding region on the 
corresponding ultrasound image, finds the raw RF data corresponding to that region, and 
computes RF and textures features from the RF data and places the results in a data base. It is 
also possible to draw multiple regions and then have the software process the RF for all regions 
of interest at a later time as a batch process. Figure 4 shows the new GUI interface. 

10 



File     Edit    View    Insert    Tools    Window    Help 

Figure 4. New Ultrasound Data Processing Software Interface. Screen capture of 
the interface used to process ultrasound data from defined regions. The pathology 
image on the right side has a square region of interest drawn (dotted box) and a 
region of cancer. The corresponding ultrasound data is denoted by the box drawn 
automatically on the ultrasound image (left). 

Of course, although this new user interface was designed to let the user process selected regions 
of interest so that a database of features values for cancer and benign tissue could be generated, 
the software is also capable of processing RF data from entire slices or multiple slices, 
automatically subdividing the data into subregions and calculating features for those regions. 

The software outlined above was used to analyze a large subset of our acquired data to verify 
correct operation of the software and to begin to determine the most useful feature combinations 
as outlined in Task 7. See task 7 description for our preliminary results. Based on these results, 
one important modification was made in the way the software computes features. In previous 
versions, the region of interest size was variable and controlled by the size selected by the user. 
Evidence that ROI size biases the feature results prompted us to allow uses to select an ROI but 
features are computed from subregions of the ROI of FIXED size to eliminate this bias. 

In Summary, the basic parts of task 4 are complete but ongoing modification continues to 
incorporate data fusion elements (from Task 5) and to make the software more accurate, robust 
and convenient to use. 

Task 5 (months 12-18): Data Fusion 

Having developed the software to use pathology images to select data for RF processing, we 
began the process of development of data fusion software to combine elastography results with 

11 



RF results in user-selected regions of interest. Having had success, with an interactive scheme 
for orienting pathology images with those from ultrasound RF data, we have elected to initially 
use the same approach for elastography, processing the elastographic data separately using 
software from the University of Texas and combining those results with those from the RF 
analysis. We have completed the development of software that calculates RF and texture 
features from data corresponding to a user selected region on a pathology image AND selects the 
appropriate region from the corresponding elastographic image placing the mean strain value 
from the elastogram ROI into the feature database (figure 5). 
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Figure 5. New Interface for Combining Elastography with RF Analysis. The user selects a region of interest 
(dotted box) in the pathology image and the software automatically selects the corresponding region from the 
RF data (left image) and elastogram (right image). The results of RF analysis, texture analysis, and the 
elastographic strain are all placed in the database for cancer or benign depending on the ROI type selected in 
the center pull down menu. 

The user draws boxes around each image to inform the software of the relative sizes of the 
prostate in each image so that the software can find corresponding regions on each image. This 
method eliminates problems from distortion of the image in the vertical direction that can occur 
in elastography. The software also allows the user to adjust the display of the elastogram since 
the elastographic data may not always give a pleasing image without grayscale processing. 
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The new software represents a significant programming change in that the tools used (Matlab 
Guide) are different from the previous version of software. This necessitated a significant 
rewrite of code but should yield benefits in the future should further modifications to the user 
interface be required. The elastographic data are currently being acquired from the actual 
elastographic image, which is a map of strain values windowed into 256 shades of gray. The 
next version may use the unwindowed strain values. At a still later time, it may be appropriate to 
calculate the elastographic data directly from the RF after the region of interest is selected. This 
issue will be addressed after new elastographic routines that include effective lateral motion 
correction are developed with the help of Dr. Konofagu as noted below. 

One issue of great concern is the quality of the elastographic data. Since the prostate glands are 
not embedded in gel as were the glands scanned by other investigators in animal work, there is 
great potential for lateral decorrelation which increases the noise in elastograms and decreases 
the contrast between benign and malignant tissue. Software with improved ability to correct for 
lateral motion was expected from the University of Texas by April 2001. It finally arrived in 
October 2001 but has not performed to expectations on test objects. Elastography software 
problems and personnel problems at Texas have prompted us to move forward with the 
development of new elastography software incorporating high quality lateral correction on our 
own. I have enlisted the help of Eliza Konofagu (currently a postdoctoral fellow at Harvard) to 
head the development effort with the aid of graduate students at the University of Texas. Steve 
Felker will coordinate integration of the new elastography software with our RF software 
developed by Mr. He. 

Another issue with elastography that was mentioned previously is the problem of quantifying 
what have been regarded as qualitative images. Our plan to use the change in thickness of the 
overlying standoff pad as a means of normalizing the strain values has been hampered by the fact 
that many of the elastograms collected did not include enough of the standoff pad to measure it 
accurately. We have modified the data acquisition routine to eliminate this problem, but it means 
that some additional data with the linear array alone must be acquired to have a sufficient sample 
of cancers. We have acquired approximately 10 glands using the modified technique and must 
acquire an additional 10 to 15 more. In addition, we plan to test the normalization routines on a 
phantom test object containing a hard inclusion of known stiffness relative to the surrounding 
material. This object is under construction at the University of Wisconsin. 

Task 6 (months 7-18): More prostate data collection. 

As mentioned in the previous section, software from the University of Texas expected to allow 
acquisition at higher compressions for higher image quality did not meet expectations and 
because of personnel problems at UT, hopes for new software have faded. Thus experiments 
using larger compressions are on hold pending internal development of new elastography 
software incorporating lateral correction and estimation of lateral strains. 

13 



In the previous report, the failure of our primary ultrasound instrument was documented as were 
our plans should the instrument prove irreparable. Luckily, we were able to find a service 
engineer with experience on the old Diasonics systems and in February 2001, the Diasonics unit 
was repaired and became operational again. By this time, we had identified some problems with 
the RF data already acquired (such as the absence of a visible overlying standoff on some cases 
and saturation of the A/D converter on others) and decided to acquire 15-20 additional prostate 
cases using the linear array before moving on to linear + endorectal curved array acquisitions. 
We have acquired about 10 of those cases despite the delay caused by the laboratory technician's 
departure. We hope to begin test acquisitions with the curved array probe in January or February 
2002 with or without a replacement laboratory assistant. The PI will perform the acquisitions but 
since acquisition with both a linear array and curved array will require upwards of two hours— 
usually during busy clinic hours, a replacement lab assistant is hoped for to reduce conflicts 
between acquisitions and the clinical responsibilities of the PI. 

Task 7 (months 11-22): Compute RF and texture features for all stage 1 acquisitions. 

Computation of RF and Texture Features on approximately 75% of the existing data was 
completed by June 2001. Potentially useful features were identified using the Mahalanobis 
distance as an index of the usefulness of both single features and feature combinations for 
separating benign from cancerous tissue. Figure 6 shows the experimental setup used: 

At total of eight different RF and 
texture features were computed 
from selected regions of interest. 
Features based on the RF data 
included the slope of backscatter 
vs. frequency, the zero frequency 
intercept of the backscatter 
intensity, and the mid bandwidth 
value for backscatter1. One feature 
based on image statistics was 
computed, this was the image 
signal to noise ratio (U/G)

2
. Four 

image texture features based on the 
co-occurrence matrix were 
computed: angular second 
moment, entropy, contrast, and 
correlation3. The features were 
computed from 36 cancer regions 
of interest and 19 benign regions 
of interest. Table 1 shows the 
mean and standard deviations for 

Figure 6: Data Acquisition Setup. The prostate gland is embedded 
in toweling and flooded with normal saline. The ultrasound probe 
(long black arrow) is held vertically and compresses the gland 
driven by a computer controlled stepper motor. The standoff gel 
block is held in place by the reddish orange plastic block (short 
black arrow) attached to an aluminum pressure plate attached to the 
transducer. 

the various features. 
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Table 1. Feature Values for Benign and Malignant Prostatic Tissue 
FEATURE CANCER (Mean ± s.d.) BENIGN (Mean± s.d.) 
Slope 0.778 ± .348 dB/MHz .588 ± .326 
Intercept -11.81 ±2.19dB -10.41 ±2.20 
Mid Band Value -7.88 ±1.48 dB -7.42 ±1.57 
Signal to Noise Ratio 1.62 ± .38 1.36 ± .35 
Angular Second Moment .0099+ .018 .0029 ± .0026 
Entropy -5.4 ±1.04 -6.42 ± .78 
Contrast 4111 ± .38 2066 ±1049 
Correlation -.7469 ±.115 -.8043 ± .0788 

The Mahalanobis distance is a measure of the statistical distance between two clusters of values 
relative to the scatter or variance of those values. To provide good discriminability between 
benign and cancerous prostate tissue, the Mahalanobis distance should be maximized. Table 2 
shows the Mahalanobis distance between cancer and benign tissue using linear discriminant 
analysis and various features or feature combinations. The discriminant analysis was performed 
using Minitab R13 software using the leave-one-out (cross-validation) method. This method 
minimizes the optimistic bias that results from using the same data for both training and 
performance estimation. 

Table 2. Feature Performance for Cancer vs. Benign 
FEATURE (S) MAHALANOBIS DISTANCE 

Slope & Intercept 0.418 
Intercept & Entropy 1.351 
Slope & Entropy 1.498 
Intercept & Contrast 0.765 
Entropy & Contrast 1.14 
Slope 0.309 
Intercept 0.403 
Signal to Noise, Slope, Entropy 1.700 

applied to the best two-feature combination, slope and entropy, 
curve was Az = .77, far from ideal but still encouraging. 

As is usually the case, more 
features lead to larger values and 
greater separation. But with the 
limited data set at hand, it is 
appropriate to use no more than 
2-3 features to avoid an 
optimistically biased estimate of 
performance for the task of 
separating cancer from benign 
tissue. Receiver operating 
characteristic analysis was 
The resulting area under the ROC 

During the analysis, it was noted that the size of the region of interest used could affect the 
results—especially for SNR and the texture features. Since benign regions of interest tended to 
be larger than cancer regions, some of the difference in features could be the result of ROI size. 
To eliminate this effect, we have modified the software so that regardless of the size of ROI 
chosen by the human observer, the features are all computed from sub regions of identical size 
(approx RF lines wide). For a large region of interest, more subregions are present but this no 
longer affects the mean value, only the variance and Standard Error of the Mean. We have 
recomputed all features using this technique but the results have not yet been analyzed. A 
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disadvantage of this new method is that computation times become very long. We are 
minimizing this by acquiring a faster PC for processing. 

In summary, we have completed processing of a considerable portion of the RF data and the 
results are promising. Using the knowledge we acquired performing that processing, we are 
acquiring some additional data and are modifying the way we compute the features to remove 
bias and increase reliability. We are in the process of combining the elastography feature with 
the RF, image, and image texture features. 

Task 8 and Task 9 (months 13-26 and 24-30): Acquire RF with a curved array transducer. 

As mentioned in Task 6, collection of data using a curved array transducer will begin shortly. 
The software developed for linear array data will require some modification so that the correct 
region is obtained from the ultrasound data once the pathology image region of interest is 
selected. This problem (one of scan conversion—i.e. polar to rectangular coordinate conversion) 
should be solvable in a short period of time. Elastography with a curved array has already been 
demonstrated to be feasible, but the problem of how to normalize elastograms to correct for the 
non-uniform stress distribution has yet to be solved. One method is to use a modification of the 
method we plan for the linear array, but measure standoff distances along each A-line and 
perform normalization one A-line at a time. This method will be tested on the phantom test 
object currently under construction. Since the Diasonics scanner is once again operational, there 
will be no need to change scanners although a change is still possible should the Diasonics 
instrument fail or should the Diasonics endorectal probe (old and obsolescent) prove to give data 
of inferior quality. 

RESEARCH ACCOMPLISHMENTS 

■ Software has been developed under this program that can reliably find ultrasound data 
corresponding to an area of pathology on a pathology image. This technique could have 
broad applicability to any situation where in-vitro scans are being correlated with 
pathology. 

■ Software for computing both RF based and image texture based features for prostatic 
tissue or any other tissue has been developed and tested. 

■ Preliminary analysis shows that the features are promising and suggest that RF and 
texture based features can be used to discriminate between cancer and benign tissue. 
Discriminability will hopefully be further enhanced by adding elastography. 

■ Software to combine elastographic strain data with RF and texture features has been 
developed and is being refined. 

REPORTABLE OUTCOMES 
1.   Database of completely sectioned prostate glands with all cancer foci located plus 

correlated ultrasound raw data. This is a valuable resource that may be used for studies of 
the distribution of cancer and for any study requiring ultrasound image or raw data that 
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can be precisely correlated with histology. The combining of this data set with the AFIP 
data set will produce a larger and more reliable data set than now exists for estimation of 
the probability of cancer as a function of location in the gland. 

2. Abstract: He Z, Skljarevski G, Trainer T, Tuthill JM, Wagner RF, Huston D, Garra BS. 
Classification of benign and malignant prostate tissue using radio frequency ultrasound 
data: preliminary results of in vitro studies of radical prostatectomy specimens. Ultrasonic 
Imaging 2000;22:238. see Appendix 1. 

3. Presentation: He Z, Skljarevski G, Trainer T, Tuthill JM, Wagner RF, Huston D, Garra 
BS. Classification of benign and malignant prostate tissue using radio frequency 
ultrasound data: preliminary results of in vitro studies of radical prostatectomy 
specimens. Presented at the 26th International Symposium on Ultrasonic Imaging and 
Tissue Characterization, Rosslyn, VA, May 31 2001 See Appendix 2 

4. Thesis: He, Zhi, Quantitative Sonographic Prostate Cancer Characterization, Masters of 
Science Thesis, October 2001 See Appendix 3 

5. Masters Degree Awarded October 2001 to Zhi He 
6. Employment & Training Supported by this Project Funding: 

a. Masters and Doctoral Training by Zhi He 
b. Part time Programmer: Steven Felker 
c. Half time Research Assistant: TBN (currently vacant position) 

CONCLUSIONS 

Despite problems caused by the departure of the research assistant and continued delays in 
receiving software for elastography from the University of Texas, considerable progress has been 
made in the past year with completion of software and a procedure for precisely correlating 
pathology and ultrasound data acquired in vitro with approximately 2mm spatial accuracy. These 
methods and the software could be applied to other organs with equal success. 

Our preliminary analysis of the RF data suggest that cancerous tissue can be differentiated from 
benign tissue using RF and texture features. Some of the RF data is of poor quality necessitating 
acquisition of some additional data—this will be acquired in a modified fashion that will allow 
for normalization of the elastographic data in a novel manner that is simple but robust (unlike 
other methods that have been reported such as computation of the elastic modulus). Additional 
personnel have been hired to speed up software development and incorporation of higher quality 
elastography strain data into our database. 

We are almost ready to tackle the problem of using a curved array transducer but are confident 
that the needed modifications can be made to our software so that it will work properly with the 
new transducer array. We remain confident that we will be able to produce probability images 
showing areas likely to contain cancer using the combination of RF, texture, and elastographic 
features. This has the potential of being a valuable tool for clinicians using ultrasound to guide 
biopsies AND with the release of standard clinical ultrasound machines capable of storing raw 
ultrasound data (such as the new General Electric Logiq 9), it will be something that can be 
implemented on existing commercial hardware! 
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IN VITRO PROSTATE TISSUE 
CLASSIFICATION PROJECT 

GOAL 
To combine ultrasound RF, elastographic, 
image texture, and clinical features to more 
accurately locate regions of high suspicion 
for cancer using prostate ultrasound. 

IN VITRO PROSTATE TISSUE 
CLASSIFICATION PROJECT 

METHODS 1 
• Scan Entire Prostate Gland in Saline Bath at 

2mm Intervals (prostatectomy specimens) 
• Scan Calibration Phantom at Same Gain 

Settings 
• Section the Prostate Specimen Along Planes 

Similar to Those Scanned Using US 
• Identify CA & Benign Regions on Path 

Specimens and in Corresponding US Data Set 

IN VITRO PROSTATE TISSUE 
CLASSIFICATION PROJECT 

METHODS 2 
• Compute Elastographic, RF, and Texture 

Features for the CA and Benign Regions 
• Determine Which Features Best Separate 

Cancer From Benign 
• Combine Those Features With Location 

Specific CA Probability and PSA Probability & 
Generate an Estimator for Cancer Probability 

• Begin With Linear Array Data—then Develop a 
Similar Classifier for Curved Array EC Probe 

IN VITRO SCAN SETUP A COMPLICATION: 
PATHOLOGY SECTION 

PROCESSING & REGISTRATION 
• "Whole Mount" Sections Are Not Done - Each 

Pathology Slice Was Divided into Fourths to 
Fit Microscope Slides 

• After Fixation & Staining, CA Areas Are 
Marked With Indelible Ink 

• Marked Slides are Scanned at 400 dpi Using a 
Flatbed Scanner 

• Images are Reassembled Into a Whole 
Pathology Section Using Photoshop 



PATHOLOGY QUARTER 
SECTIONS WITH CA MARKED 

QUARTER SECTIONS 
ASSEMBLED INTO WHOLE 

SLICE 

IN VITRO PROSTATE TISSUE 
CLASSIFICATION PROJECT 
FEATURE COMPUTATION SOFTWARE 

• Matlab Based 
• Windows GUI 
• US Image Selected Causes Corresponding 

Pathology Image to Be Selected 
• Pathology Image Oriented & Sized by User 

to Match US 
• ROI Drawn on Path Image -» 

Corresponding ROI in US RF Data Set 

REGION OF INTEREST 
GENERATION 
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CASE MATERIAL 
• 78 Radical Prostatectomy Specimens So Far 
• Many With Only Microscopic (l-2mm) Cancer 

Foci Only 
• Data From Many Cases Unusable Due to 

Technical Problems During Acquisition 

• Current Preliminary Analysis Includes: 
- Cancer:   36 ROI from 12 Cancer Patients 
- Benign:   19 ROI from Benign Regions 

FEATURES CALCULATED 
• RF 

-Backscatter vs. Frequency Slope 
-Backscatter Zero Frequency Intercept 
- Backscatter Mid Band Value 

• Image Statistics 
-Signal to Noise Ratio (|i/a) 

• Image Texture 
-CoC Angular Second Moment, Entropy, 

Contrast, and Correlation 
• Elastographic Axial Strain (qualitative 

only) 



RESULTS 
Feature CA Mean (±s.d.)    Benign Mean (±s.d.) 

Slope 0.778±.348 dB/MHz .588±.326 

Intercept -11.81±2.19dB -10.41 ±2.20 

Mid Band -7.88±1.48dB -7.42il.57 

SNR 1.62±.38 1.36±.35 

ASM .0099±.018 .0029±.0026 

ENT -5.4±1.04 -6.42±.78 

CON 4111±3872 2066±1049 

COR -.7469±.115 -.8043±.0788 

FEATURE PERFORMANCE 
FEATURE(S) Mahalanobis Dist. Az 
Slope & int .418 
Int & ENT 1.351 
Slope & ENT 1.498 .77 
Int & CON .765 
ENT & CON 1.14 
Slope .309 
Intercept .403 
SNR, slope, ENT 1.700 

FUTURE WORK 
• Add New Prostate Cases to Improve Database 

Quality 
• Use a Constant Size ROI to Eliminate Bias in 

Statistical Features Due to ROI Size (est. to be 
1/5 to 1/8 of Observed Difference) 

• Add the Elastography Results to the Classifier 
• Add Cancer Probability Distribution 

Information to Classifier 
• Add PSA Information 
• Acquire Data Using a Curved Linear (EC) 

Probe and Develop a Classifier for That Data 
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Abstract 

Prostate cancer is second only to lung cancer as the cause of cancer deaths among 
American men. All men are at risk for developing prostate cancer, and as a man ages, 
his risk of developing prostate cancer increases. The purpose of this study is to 
combine clinical, ultrasound, and elastographic features into a system to reliably 
identify areas of the prostate that are likely to be cancerous. The radio frequency (RF) 
ultrasound data were acquired at 2 mm intervals from 78 radical prostatectomy 
specimens. After acquiring the ultrasound data, the specimen is sectioned for 
histological analysis at 2 mm intervals allowing a comparison of each ultrasound 
'slice' with a corresponding histology image. The areas of cancer in each histology 
image are marked by indelible ink and a corresponding region of interest in the 
ultrasound data set is then found. The ultrasound features used in this study include 
the basic texture feature - envelope signal-to-noise ratio (SNR), four features coming 
from the co-occurrence matrix and three features coming from spectral analysis of RF 
echo signals. Software has been developed to compute feature values at all points in 
each RF data 'slice'. Using two features together (entropy of a co-occurrence matrix, 
and correlation of a co-occurrence matrix), the best classification performance is 
0.8386 (area under receiver operating characteristic curve). Using three features 
together (entropy, signal-to-noise ratio, and slope from spectral analysis of radio 
frequency echo signals), the best classification performance is 0.8541. The 
preliminary results show RF and envelope-detected signal analyses are diagnostically 
useful to discriminate cancer in prostate tissue. 
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Chapter 1 Introduction and Background 

1.1 Prostate Cancer 

Prostate cancer is second only to lung cancer as the cause of cancer deaths among 

American men. All men are at risk for developing prostate cancer, and as a man ages, 

his risk of developing prostate cancer increases. Early detection of prostate cancer can 

dramatically reduce morbidity. Convenient, noninvasive methods of prostate cancer 

detection have the potential of improving early detection and reducing death rates. 

1.1.1 Introduction 

The prostate is an organ that is only present in men. It lies just inferior to the urinary 

bladder, which is shown in Figure 1. It is a chestnut-shaped organ that surrounds the 

beginning of the urethra. It is composed of 30 to 50 compound tubuloalveolar glands 

between which is the fibromuscular stroma. These glands secrete a milky fluid 

during ejaculation that contributes to semen. The prostate no longer serves its main 

purpose when fathering children is no longer a goal. 
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Figure 1: Male organs [Cap 2001] 

1.1.2 What is Prostate Cancer? 

Because the prostate is wrapped tightly around the urethra, any enlargement can 

cause the flow of urine to be restricted. This often happens as men get older. It may 

be due to a condition known as Benign Prostatic Hyperplasia (BPH). BPH is not 

cancer. However, enlargement of the prostate may also be caused by cancer. Prostate 

adenocarcinoma is a malignant transformation and growth of the glandular 

component of the prostate. This tumor can spread beyond the capsule termed capsular 

penetration, to the seminal vesicles which are glands located next to the prostate and 

below the bladder, or to the lymph nodes which filter the clear fluid draining from the 

prostate. The most common site of distant spread is to bone [Cap 2001]. 



1.1.3 Cause of Prostate Cancer 

The cause of prostate cancer is presently unknown. But the risk of getting prostate 

cancer has been shown to vary with several factors [Prostate 2001]: 

Age: Below the age of 40, the risk of prostate cancer is extremely low. After the age 

of 50, the chance of getting prostate cancer increases rapidly with age. Three-quarters 

of all men with prostate cancer are over the age of 65. 

Race: Studies in America have shown African American men are twice as likely to 

develop prostate cancer as white men. 

Family History: Other members of the family having been diagnosed with prostate 

cancer increases the risk by 2 or 3 times, particularly if they were diagnosed with the 

disease at a young age or there have been several members of the family diagnosed 

with the disease. 

Diet: American studies have shown that a diet high in animal (saturated) fat may 

double the risk of getting prostate cancer. 

1.1.4 PSA 

Prostate specific antigen (PSA) [PROAC 2001] is an enzyme that is released into the 

bloodstream by both normal and cancerous prostate cells. Any condition that could 

cause injury or irritation to the prostate gland such as infection (prostatitis) or 

noncancerous enlargement of the prostate (BPH) can cause elevation of PSA. 

However, the possibility of cancer is higher with an elevated PSA. A PSA count of 

above 4.0ng/ml is usually considered elevated. 



1.2 Introduction to Ultrasound 

1.2.1 Introduction 

By convention, the limit of human hearing is normally taken be 20kHz (the unit Hz 

means one cycle per second). Vibrations with frequencies above 20kHz are said to be 

ultrasonic. In fact, medical ultrasound uses frequencies much higher than this. 

Typically, the range 2-10 MHz is used for medical ultrasonic scanners. 

Ultrasound waves are usually elastic compression waves, particularly in liquid or 

semi-liquid materials, such as soft-tissue organs. As the ultrasound wave propagates 

through the target, it will interact differently with different types of tissue or matter. 

The interaction depends on the acoustic properties of the tissue, such as the 

attenuation, absorption and scattering, impedance and velocity. The acoustic 

parameters depend strongly on the frequency of the ultrasound, as well as other 

parameters such as temperature. The values for the speed of ultrasound waves in 

different soft tissues are very similar. On modern scanners, it is assumed that the 

value is 1540m/s, which is a reasonable approximation in most cases [Lerski 1988]. 

Ultrasound dose not penetrate through hard tissue, such as bone, very well and as a 

result, the scanning of bones is not routinely used in medical ultrasound. 

1.2.2 Ultrasound System 

There are numerous types of ultrasound systems. Conventional sonographic units are 

comprised of a transducer, pulse generator, demodulator, amplifier, time gain 

compensator, digital scan converter, memory storage, image processing, and a 

display. More complex ultrasound systems may also have Doppler, color flow, or 

other electronic features. Figure 2 is a simplified representation of ultrasound unit. 

The following is a simplified explanation of the ultrasound system. A more detailed 

description of medical ultrasound can be found in [NCSU 2001]. The transducer (a 



piezoelectric crystal) works to both send very high frequency sound waves and 

receive their echoes from the target. When sending the sound, the piezoelectric crystal 

vibrates in response to voltage changes applied to it. This converts electrical energy 

into mechanical sound wave energy and introduces motion in the adjacent medium 

(solid, liquid, or gas). These sound waves are transmitted through the target and 

reflected at some of the boundaries. A reflected sound wave will travel back and 

strike the piezoelectric crystal. The crystal will vibrate, and this mechanical stress will 

cause it to output a voltage proportional to the stress. These voltage changes are then 

sent to amplifiers, filters, and other electronic hardware so that the computer display 

can display data for viewing. 

ELECTRONIC 
HARDWARE 

(atipi,   f I Hera,   t Ye. ) 

Figure 2: Ultrasound unit [NCSU 2001] 

1.2.3 Medical Ultrasound 

Ultrasound has proven to be a very valuable and cost-effective complementary 

medical imaging method, along with CT (Computed Tomography) and MRI 

(Magnetic Resonance Imaging). Ultrasound tissue characterization techniques are 

often based on the premise that disease processes alter physical characteristics of 



tissue and that these alterations can cause observable changes in acoustic scattering 

properties [Lizzi 1986]. 

1.2.4 Ultrasound Image 

To investigate quantitative sonographic characterization, it is important to convert the 

radio frequency (RF) data into image. The two-dimensional B-mode ultrasound 

images, as shown in Figure 6, are formed by combining data derived from a series of 

one-dimensional A-line scans. Each A-line scan is the backscattered RF signal 

recorded at a single transducer location resulting from the transmitted pressure wave 

reflecting from scattering sites within the object being scanned. 

One A-line scan and its FFT result are shown in Figure 3 and 4. The ultrasound 

transmit pulse has a 5 MHz center frequency. 
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Figure 3: The RF signal of a single A-line 
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Figure 4: FFT result of a single A-line 

An image of the underlying tissue properties can be formed by combining the return 

signals from a sequence of A-line scans at different lateral positions. In order to 

create an image, that is recognizable by the human eye, the data are often processed 

to form an image called B-mode image. To get the standard B-mode ultrasound 

image, the envelope of the RF signal needs to be found. This is accomplished by 

using the Hilbert transform [Mohanty 1987]. 

The Hilbert transform is defined as 

jc(f) = —®*(0 (l.l) 

_ l   r° X X(T) 
dn 
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The Hubert transform produces a sequence that is the input data with a 90° phase 

shift (i.e., sines become cosines and vice versa). The details can be found in Appendix 

E. Figure 5 shows how to realize the Hubert transformation in a computer with digital 

data. 

x(t) 

$(t) 

FFT •X(f) 

IFFT X(f) • -jsgn(f) 

Figure 5: The implementation of Hubert transform in computer 

The Hubert transform shifts the phase and is therefore called a quadrature filter. A 

signal z(t) is called an analytic signal if 

z(t) = x(t) + «(/) (1.2) 

where x(t) is the Hubert transform of x(t). If x(t) = A cos(wt + <t>), then 

x(t) = Asin(wt + <f>)and z(t) = eiiw,+^. 

The envelope of the RF signal can then be computed by taking the magnitude of the 

complex sequence. 

V = yjl2+Q2 (1.3) 



where V is the envelope of the RF signal. / is a real input sequence which is the 

original data. Q is the imaginary part which is the actual Hubert transform. The 

imaginary part is a version of the original real sequence with a 90° phase shift. 

This method was used to compute the envelope of the RF signal in Figure 3. The 

amplitude of the envelope-detected signal, represented by brightness, is displayed in a 

standard B-mode ultrasound image. See Figure 6. It should be noted that the B-mode 

image is useful for certain applications, it does not contain all of the original 

ultrasound information. Other signal processing and image representation modes are 

also very useful in medical ultrasound. 

Figure 6: Ultrasound image of prostate 



1.3 Goal 

1.3.1 The Clinical Problem 

The problem of finding an accurate method for the detection and staging of 

adenocarcinoma of the prostate (ACP) is one of the outstanding challenges in the 

field of diagnostic medicine. The principal methods used to detect and confirm the 

presence of the ACP are digital rectal examination (DRE), the serum Prostatic 

Specific Antigen assay (PSA), and transrectal-ultrasound-guided (TRUS) prostatic 

biopsy. 

Unfortunately, current individual diagnostic imaging and laboratory tests for the 

detection and staging of ACP perform poorly. The PSA test now plays a central role 

in screening for ACP because it is inexpensive and relatively sensitive. The problem 

is that there is considerable overlap between PSA values for patients with cancer and 

those with no cancer, especially for the group of older males with benign prostatic 

hypertrophy (BPH). For this reason, an elevated PSA must be followed by a 

confirmatory test. The DRE and TRUS alone have proven to be insufficiently 

sensitive to be used either as screening studies or as studies that can reliably guide a 

prostate biopsy in a patient with an elevated PSA [Garra 1998]. At present, most 

clinicians do not consider TRUS imaging to be adequate for detecting suspicious 

regions. It is considered to be inadequate because its sensitivity is not sufficient to 

reveal the presence of cancer and to direct a biopsy needle to the cancer site [Feleppa 

1996]. One ultimate goal of this research would be to create a system that can reliably 

direct a biopsy needle to sites that are likely to be cancerous. 

1.3.2 Recent Research on Quantitative Ultrasound 

Because of the limitations of the conventional methods in this field, a number of 

investigators are using quantitative techniques to offer improved sensitivity and 

specificity for prostate cancer. Feleppa et al. [Feleppa 1996] used quantitative 
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ultrasonic radio frequency (RF) spectral features and elementary discriminant 

functions to discriminate cancerous from noncancerous prostate tissue. Feleppa et al. 

[Feleppa 1997] reported a value of Az of 0.79 ± 0.07 when using their RF features to 

make the discrimination between cancerous and noncancerous tissue, and a value of 

Az of 0.60 ± 0.21 from clinical interpretation of the conventional images. And 

improved results using RF features have been achieved in Feleppa's recent study 

[Feleppa 2001]. The work of Feleppa et al. is limited to the microscopic features. 

Huynen et al. [Huynen 1994] investigated the discriminating power of macroscopic 

features from ultrasonic image texture. Ophir and colleagues [Ophir 1997] have 

recently measured the elastogram for human prostate tissue in vitro. The elastogram 

is a display of tissue hardness deduced from the local tissue strain that occurs in 

response to an externally applied static compression. It has been shown to be useful in 

the characterization of malignant breast tumors that are harder than benign lesions 

[Garra 1997], and is expected to be useful in prostate cancer detection since prostatic 

malignancies are also often "hard" on palpation. 

1.3.3 Goal 

The history of developments in the field of quantitative analysis of ultrasound and 

elastogram features strongly suggests that investigators turn their attention to an 

analysis of an optimal combination of the microscopic RF features, the macroscopic 

image texture features, and measures of tissue hardness derived from the elastogram. 

So the ultimate goal of this project is to combine features derived from ultrasound 

(US) images, US radio-frequency (RF) data, tissue elasticity imaging, and clinical 

data such as PSA into a computerized system for displaying prostate images that 

indicate probable locations of cancer [Garra 2000]. Only features derived from US 

images and RF data are used to discriminate cancerous from noncancerous prostate 

tissue in the study of this thesis. 
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1.4 Thesis Structure 

This thesis is organized as follows: Chapter 2 introduces the features used in this 

research, which come from ultrasound images and ultrasound radio-frequency data. 

Chapter 3 outlines the evaluation methods, which include correlation, t-test, 

Mahalanobis distance, discriminant analysis and performance evaluation. Chapter 4 

develops a MATLAB-based tool, with which we can draw Region of Interest (ROI) 

on a pathology image to get the corresponding data in the ultrasound radio-frequency 

data sets and compute the corresponding US features for the chosen ROI. In Chapter 

5, all the evaluation methods introduced in Chapter 3 will be applied to the data 

acquired via the feature computation software developed in Chapter 4. Finally, 

Chapter 6 summarizes the conclusions reached in the thesis, as well as suggesting 

future directions of research. 
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Chapter 2: Parameter Extraction Methods 

US data can be processed in a wide variety of methods. The availability of modern 

digital signal processing hardware and software opens up the possibility of an excess 

of available signal processing techniques. A major goal of this project is to determine 

the most suitable signal processing techniques for discriminating prostate cancer. 

Following a series of discussions with experienced medical ultrasound investigators 

[Garra 1993, Wagner 1983, Wear 1995], a set of eight features was chosen for further 

investigation. This choice was based on a combination of the ability of these features 

to work on the detection of cancer in other organs and by an understanding of the 

underlying physical mechanisms. The choice of features were the basic texture 

feature - envelope signal-to-noise ratio (SNR), four features coming from the co- 

occurrence matrix and three features coming from spectral analysis of RF echo 

signals. The following is a description of the signal processing algorithm associated 

with each feature and the underlying rationale for use. 

2.1 Image Statistics 

There are many features based on the first-order statistics. Tissue ultrasound Signal to 

Noise Ratio (SNR) was chosen in our study. This may be useful because it may be 

another way to measure the relative contribution of specular vs. diffuse tissue 

backscatter components. These have been previously shown to be of value for 

characterization of both liver and kidney tissue [Garra 1989, Garra 1994]. 

2.1.1 Tissue Ultrasound Signal to Noise Ratio 

SNR = {i/o- (2.1) 
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//= -£/(*, v) 
n x,y 

<7 = J^Z(f(x>y)-v)2 
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where ju is mean gray level, an indicator of average tone of the image, a is variance 

of gray level, an indicator of how much variation exists in the image with respect to 

the average tone, n is the total number of pixels, and f(x, v) is the gray level in pixel 

(x,y). 

2.1.2 Rayleigh Distribution 

The probability distribution of a narrow band noise process n(t) can be derived by 

considering a complex phasor 

n(t) = r(t)exp(MO) (2-2) 

where r(t) is the magnitude or envelope and (p(t) is the phase. This can also be 

written in terms of its real and imaginary parts (in-phase and quadrature components) 

as 

n(t) = x(t) + jy(t) 

x(t) = r(t)cos(<p{t)) 

y(t) = r(t)sm(<p(t)) 
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If both random processes x(t) and y(t) are Gaussian distributed with the same 

variance and zero mean then the probability density functions P(x) and P(y) are given 

by 

i  A    ,-x2 

P{x) = {—Y)2exp(—) 
Ina 2a 

2ncr 2<r 

Assuming x and y are statistically independent then 

P(x,y) = P(x)P(y) (2.3) 

l       ,-(x2+y2), 
—TexP( —2 ) 

2#Y7 2a 

Transforming differential areas using 

dxdy = rdrdcp 

Gives the joint probability density function as 

r .    r2 

P(^) = —exp(-—) (2.4) 

Since this is independent of phase the random variables r and phi are statistically 

independent and therefore 

P(r,<p) = P{r)P{<p) 
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Then 

P(<p) = |° P(r, <p)dr forO<(p<27T (2.5) 

J_ 
In 

P(r) = f" P(r,(p)d(p for r > 0 (2.6) 

r r2 

^eXP(-2^} 

This is normally called the Rayleigh Distribution [Bourke 2001]. The Rayleigh 

distribution is a special case of the Weibull distribution [Hahn 1967]. 

2.1.3 Experimental Result for Prostate and Phantom 

In using quantitative techniques to analyze the backscattered RF signal, it is helpful to 

have a model that relates physical interaction between the ultrasound pulse and the 

scattering medium to measured quantities derived from the observed signal. The most 

widely accepted model of ultrasound scattering in soft tissue has been developed by 

Wagner et al. [Wagner 1986, Wagner 1987]. In this model, the scatterers are divided 

into three classes. The major two classes are described as follows: 

The first class consists of a large number of randomly-located scatterers whose 

structure is much smaller than the wavelength. When the number of scatterers per 

resolution cell is sufficiently large and the phases of the complex phasors are 

randomly distributed between 0 and 2 n, then, the real and imaginary parts of the 

resulting accumulated signal have a circular Gaussian joint pdf given by Equation 
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(2.3). The pdf of the magnitude signal that is displayed in B-mode images is given by 

a Rayleigh pdf Equation (2.6). 

The second class of tissue scatterers is nonrandomly distributed with long-range 

order. It contributes a specular backscattered intensity. When these scatterers are 

present along with the random diffuse scatterers, the resulting magnitude signal is no 

longer Rayleigh distributed. 

From the above discussion, we know a histogram of the gray-scale pixel values for 

the B-scan image with fully developed speckle will follow a Rayleigh probability 

density function (pdf). The theoretical value of SNR for Rayleigh statistics is found to 

be 1.91. [Wagner 1983]. For an image with specular as well as diffuse scatters, the 

value will be lower, in most instances. 

Figure 7 is the histogram of a phantom magnitude image shown in Figure 9. This 

phantom has predominately small scatters and contains very few specular scatters. 

The probability distribution of gray level should follow a Rayleigh distribution. 

Figure 8 shows that it does follow a Rayleigh distribution. It should therefore exhibit 

a ju/cr value very close to 1.91. Figure 9 demonstrates that sub-regions calculated 

from within the phantom do in fact exhibit a ju/a close to 1.91. 

Figure 10 shows a histogram of a typical prostate magnitude image. This image is 

shown in Figure 12 with the calculated signal to noise ratios for several regions of 

interest in the image. Figure 11 is the probability distribution of this image, which 

shows substantial non-Rayleigh behavior. This non-Rayleigh behavior is also 

revealed by the envelope SNR less than 1.91. All the sub-regions have values less 

than 1.91 and it indicates that the sub-regions contain specular as well as diffuse, 

randomly positioned scatters. This is an expected result since tissue rarely exhibits 

purely diffuse scattering. Tests on other sections have yielded similar results. 
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Figure 7: Histogram of envelope values from phantom shown in Figure 9 
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Figure 8: Probability distribution of phantom envelope 
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Figure 9: Signal to noise ratio values for sub-regions of a tissue mimicking calibration 

phantom. Average value for the four regions is 1.893. 
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Figure 10: Histogram of envelope values from prostate shown in Figure 12 
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Figure 11: Probability distribution of prostate envelope 
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Figure 12: Signal to noise ratio values for sub-regions of a prostate section (case 18) 
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2.1.4 Signal-to-Noise Ratio Based on Split-spectrum 

Based on the suggestion from Dr. Keith A.Wear and Dr. Robert F.Wager, we tried to 

split the spectrum to calculate the signal to noise ratio (SNR) for the high band and 

low band separately. When we use the phantom data as the input, the result should 

also be close to 1.91. 

To calculate the SNR based on split-spectrum, there are several steps to finish this 

task: 

1) Get the complex (Real, Imaginary) FFT of the trace of interest (from a given ROI). 

2) Split the spectrum into two parts - higher band and lower band. 

3) Take the IFFT of the complex data set from each band. 

4) Detect envelope of each signal and get /u I eras before. 

The most important step is how to split the spectrum into two halves. As shown 

before, the center frequency is 5MHz, and the sampling frequency is 48MHz. We can 

use the following formula to change the center frequency into Nyquist frequency. 

f„ =     ^c     = —— = 0.2083 (2.7) JN    0.5xfs     0.5x48M 

where fN is the center frequency in Nyquist frequency. fc is the center frequency, 

and fs is the sampling frequency. 

High-pass and low-pass filters are needed to split the spectrum. It might be natural to 

use the center frequency as the cut-off frequency to devise the filters. But an abrupt 

truncation will introduce "ringing" artifacts when we do the IFFT. So we want the 

window for the upper half and the window for the lower half to overlap. The 

Hamming window [MATLAB 2000] was used to devise the high-pass and low-pass 

filters. We use cut-off frequency 0.1883 to devise the high-pass filter and 0.2283 for 
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low-pass filter. The coefficients of a Hamming window are computed from the 

following equation. 

wf* + l] = 0.54- 0.46 cos(2^ ), k = 0,...,n-l 
n-\ 

(2.8) 

Figure 13 shows the 17-point Hamming window used in this research. 

10 
Sequence 

Figure 13: 17-point Hamming window 

Figure 14 shows the frequency response of the high-pass filter. Figure 15 shows the 

frequency response of the low-pass filter. 
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Figure 14: Frequency response of high-pass filter 
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Figure 15: Frequency response of low-pass filter 
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When we split the spectrum, the bandwidth for each half clearly becomes smaller 

than for the full bandwidth case. Since the size of the resolution cell is inversely 

proportional to the bandwidth, the resolution cell for the split cases will be larger than 

the original. Therefore, there should be an even better chance that the SNR will be 

closer to 1.91 than originally. The more scatters per resolution cell - all else being 

equal - the closer the SNR will be to 1.91. We have randomly chosen five ROIs in 

one phantom image and calculated the SNR of lower band, higher band and the 

normal SNR. The results are shown in Table 1. The average value for the SNR 

generated from the lower band data set is 1.899 and 1.909 for the higher band data set 

and 2.101 for the normal. This demonstrates that the SNR values generated from the 

lower band and higher band data set are closer to 1.91 than the SNR value generated 

via normal way. 

SNRL SNRH SNRN 

ROI1 1.910 1.876 2.132 

ROI2 1.957 1.965 2.052 

ROI3 1.846 1.823 2.119 

ROI4 1.905 1.923 2.079 

ROI5 1.879 1.956 2.127 

Average Value 1.899 1.909 2.102 

Table 1: Signal to noise ratio values for sub-regions of a tissue mimicking calibration 

phantom. Where L means low band, H means high band, and N means normal. 
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2.2 Image Texture 

There are several paradigms for measuring texture mathematically. A commonly used 

one is based on the gray level co-occurrence matrix (GLCM), also known as the 

spatial gray level dependence matrix (SGLD) in the literature. It has been categorized 

as an efficient approach to texture analysis [Frederick 2000, Garra 1993]. Using this 

approach representative texture features can be measured to characterize the property 

of each region of interest (ROI). Features based on the co-occurrence matrix have 

already been demonstrated to be valuable for prostatic cancer [Huynen 1994]. 

2.2.1 Co-occurrence Matrix 

The first step in computing the co-occurrence matrix is to demodulate the radio 

frequency (RF) signal to produce an envelope-detected image. This is accomplished 

by using the Hubert transform. Details can be found in Chapter 1. The Hubert 

transform shifts the input data with a 90° phase. The envelope of the RF can then be 

computed by taking the magnitude of the original and 90° phase shift time sequences. 

Then the next step is to compute the co-occurrence matrix, C. This is an NxN matrix 

where N is the number of the gray levels. Each of the elements of C, ci}, takes on a 

value that is the number of times a pixel has the value i, and its "neighbor" pixel has 

the value j. The neighbor pixel is defined as being of a given radial distance of pixels 

d at angle 0. The values in the matrix are then normalized to represent probabilities of 

specific gray level combination. Different co-occurrence matrices can be constructed 

by changing the direction and distance between pixel pairs when defining spatial 

relationships. The co-occurrence matrix for distanced and angle0 and N possible 

gray level values can be found from Equation 2.9. 
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GLCM = 

PäAl>°)   PäAW 
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pdA
N>N) 

(2.9) 

An example is given as following, 

GLCM = 

0 0 0 1 2 

1 1 0 1 1 

2 2 1 0 0 

1 1 0 2 0 

0 0 1 0 1 

(2.10) 

This is a matrix of a 5x5 image with only 3 gray levels. The corresponding co- 

occurrence matrix (d = 1, 6 = 45°) is shown in Equation (2.11) 

C = 

"4 2 0 

2 3 2 

1 2 0 

(d = l, 0 = 45°) (2.11) 

Alternatively the neighbor pixel can be defined as being dx pixels away in the vertical 

direction and dy pixels away in the lateral direction. The actual values of dx and dy 

are 5 in this research. Methods for choosing an effective neighbor distance can be 

found in [Mia 1999]. 

2.2.2 Features Based On Co-occurrence Matrix 

Once the co-occurrence matrix is calculated, parameters that might be useful in 

distinguishing tissue types can be extracted. 
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An indicator of uniformity or 

smoothness. Homogeneous textures will 

Angular Second Moment (ASM) have a higher value than inhomogeneous 

or Energy: ones because smooth textures have more 

i     j 

concentrated densities than rough 

textures. Rough textures have densities 

with higher spread or variance. 

Contrast (CON) or Difference Moment: An indicator of gray level variance and 

'    j 

therefore smoothness. 

An indicator of underlying structure in a 

Correlation (COR): texture. The absolute value of this 

f3=-LJ-  

measure will be large if the image has 

some sort of structure such as a smooth 
°*°y background or repeated sharp edges over 

a given region. 

Entropy (ENT): An indicator of the amount of 

i    j 

information provided by pairwise 

interactions of image pixels separated by 

a distance d. 

Inverse Difference Moment (IDM): Emphasizes small changes and subtle 
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f _w    P(i>J) 
/5^tl + 0-7)2 

textures. 

Dissimilarity (DIS): 

<   J 

Measures the degree of dissimilarity 

between pixels. 

Table 2: Haralick's texture parameters 

The joint probability of gray levels/ and j in the direction 6 at a distance d\s p(i,j). 

N is the number of gray levels in the digitized image. jux and juy are means of row and 

column sums separately. crx änderbare standard deviations of row and column sums 

separately. 

Many texture measures can be calculated from the co-occurrence matrix. One set of 

such texture parameters are known as Haralick's texture measures [Frederick 2000]. 

Some of them are summarized in Table 2. ASM, COR, CON and ENT are chosen 

from the above listed six features 

2.3 Spectral Analysis of Radio Frequency (RF) 

Backscatter is the reflection from the scattering sites of the pressure wave back in the 

direction of the transducer that transmitted the pulse. The ultrasonic backscatter 

coefficient is a useful parameter that describes the scattering efficiency, as a function 

of ultrasonic frequency, of a tissue or material. The backscatter coefficient as a 

function of frequency of the tissue can be used to generate three useful features - 
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slope, intercept and mid-band value. These features have been successfully used by 

Feleppa [Feleppa 1996] to differentiate prostatic cancer from benign tissue. 

A reference phantom method for measuring ultrasonic backscatter coefficients was 

used in this study. With the reference phantom method, spectra obtained in tissues are 

compared with spectra obtained from a phantom with known scattering and 

attenuation properties. The data were compensated for attenuation due to intervening 

tissues between the transducer and the ROI. 

The formula [Wear 1995] used to compute the tissue backscatter coefficient as a 

function of frequency 7],(f) is 

rj,(f) = rjp(f)^rxcxp[-4ap(f)z + 4±ai(f)zi) (2.12) 

where 7, (/) is tissue backscatter coefficient as a function of frequency. rjp (/) is 

backscatter coefficient of reference phantom. 5,(/)and Sp(f) are average power 

spectra measured from tissue and phantom, respectively. ap (/) is reference phantom 

attenuation coefficient and z is the distance from the transducer to the center of the 

ROI. In vivo measurements are presumed to involve n tissue layers with attenuation 

coefficients a,(/) and thickness zr 

The reference phantom was a tissue-like slurry containing glass beads and graphite in 

agar particles suspended in a water-alcohol solution. The attenuation coefficient was 

0.57dB/MHz-cm. The phantom used to test the backscatter coefficient measurement 

method consisted of glass beads embedded in agar. Figure 16(b) is the phantom 

image. 
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(a) RF image 

(b) Phantom image 

(c) ROIonRF 

Figure 16: B-mode images of data used for calculating the backscatter coefficient 
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To simplify the model, the tissue attenuation coefficient or, (/) was assumed to be 

constant. A value of 0.5dB/MHz-cm was selected because it is commonly considered 

to be representative of moderately vascular tissues [Feleppa 1996]. 

The RF feature is an ROI-based spectral analysis. In order to facilitate the ROI 

selection, an interactive user-based tool was developed. 

Figure 16(a) shows one ultrasound image used in this test. Figure 2.16(b) shows the 

corresponding phantom image. And Figure 16(c) is one ROI inside the ultrasound 

image chosen by user. 

2.3.1 Average Power Spectra Measured from Tissue and Phantom 

After specifying the ROI on a B-mode image, the RF data samples along each scan- 

line segment within the ROI were multiplied by a Hamming window. The windowed 

data were subjected to a fast Fourier transform (FFT), and the squared magnitude of 

the computed spectrum was derived. Spectral results for all scan line segments within 

the ROI were averaged to form an estimate of the average power spectrum. The 

average power spectra measured from tissue S, (/) and phantom Sp (/) are shown in 

Figure 17 and Figure 18. 
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Figure 17: Average power spectrum measured from tissue 

Average power spectra measured from phantom 
auuu 

8000 

i -r—       i           i 

7000 - 

6000 - - 

-§ 5000 - 
*-* 

^4000 
■ 

. 

3000 '     1 1 
2000 

•     ' 
I 

1000 

n "    /   \ 
0.5 1 1.5 

Frequency(Hz) x10 

2.5 
7 

Figure 18: Average power spectrum measured from phantom 
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2.3.2 Backscatter Coefficient of Reference Phantom 

The backscatter coefficient of reference phantom r]p (/) is a known number, which is 

shown in Figure 19 and listed in Appendix D. 

Backscatter coefficient of reference phantom 

6 8 
Frequency(Hz) 

10 12 14 

x106 

Figure 19: Backscatter coefficient of reference phantom 

2.3.3 Tissue Backscatter Coefficient as a Function of Frequency 

The tissue backscatter coefficient as a function of frequency 7, (/) was calculated by 

using Equation 2.12 and shown in Figure 20. Then the spectrum was converted to 

decibel which is shown in Figure 21. Linear regression analysis was applied to 

compute the intercept, slope and mid-band value (value of the fit at the center 

frequency) on the decibel format curve. The analysis was performed over the 

frequency range of 3.0 to 7.0MHz, Figure 22. 

34 



Tissue Backscatter Coefficient 
0.025 

m 
■o 

!E a> 
o 
O 
<D 

CD 

CO 

EÜ 

2 4 6 8 
Frequency(Hz) 

Figure 20: Tissue backscatter coefficient 

Chang into LOG 

x10 

10 
6 

2 4 6 
Frequency(Hz) x10 

10 
6 

Figure 21: Backscatter coefficient in decibel format 
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Figure 22: Tissue backscatter intensity vs. frequency 
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Chapter 3: Evaluation Methods 

This chapter contains a review of several data analysis techniques such as correlation 

analysis, t-test, Mahalanobis distance, discriminant analysis and performance 

analysis, which will be used in Chapter 5 to analyse the parameters described in 

Chapter 2. 

3.1 Correlation Analysis 

Statistical correlation refers to a quantifiable relationship between two variables. 

Furthermore, it is a measure of the strength and direction ofthat relationship. The 

strength and direction of a correlation are indicated by the correlation coefficient. 

Computing the correlation coefficients provides an efficient method to identify all 

redundant features within a group. A redundant feature provides little or no new 

information to aid in the task of distinguishing between samples from the two classes 

[Mia 1999]. 

3.1.1 Correlation Coefficient 

The correlation coefficient (r) is a number between -1 and 1 that measures the degree 

to which two variables (X and Y) are linearly related. If there is a perfect linear 

relationship with positive slope between the two variables, the correlation coefficient 

is 1; There is positive correlation (r > 0) when cases with large values of X also tend 

to have large values of Y whereas cases with small values of X tend to have small 

values of Y. If there is a perfect linear relationship with negative slope between the 

two variables, the correlation coefficient is -1; There is negative correlation (r < 0) 

when cases with large values of X tend to have small values of Y and vice versa. A 

correlation coefficient of 0 means that there is no linear relationship between the 

variables. Correlation coefficients give no information about cause and effect. 
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Similarly they provide misleading information if the relationship between X and Y is 

non-linear. 

Scatter plots are useful tools to interpret the correlation coefficient. Different types of 

correlations are shown in Figure 23 
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Figure 23: Scatter plots of different types of correlations (a) Positive correlation (b) 
Negative correlation (c) No correlation (d) Moderate positive correlation 

There are a number of techniques for measuring correlation coefficients. The most 

popular are Person's Product Moment and Spearman's Rank. 
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3.1.2 Pearson's Product Moment Correlation Coefficient 

Pearson's product moment correlation coefficient, usually denoted by r, is one 

example of a correlation coefficient. It is a measure of the linear association between 

two variables that have been measured on interval or ratio scales, such as the 

relationship between height in inches and weight in pounds. However, it can be 

misleadingly small when there is a relationship between the variables but it is a non- 

linear one [Minitab 1997]. 

We can use the following formula to compute Pearson's r. The correlation between 

two variables x and y is defined as the covariance of x with y divided by the product 

of the standard deviation of x and the standard deviation of y: 

cov 
r*y = 

xy (3.1) 
Wy 

with 

^(x - x)(y - y) 
cov„ 

^ H-l 

where cov   is the covariance between two variables x and v, x and sx are the 
xy * ■* 

sample mean and standard deviation for the first sample, and y and s^are the sample 

mean and standard deviation for the second sample. 

If there are multiple features, we can build the correlation matrix with equation (3.2). 

Computing the correlation matrix provides an efficient method to identify the 

redundant features within a group. 
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rln r2n    ■ -      rnn. 

(3.2) 

with 

cov, 
ru = 

C7,.C7. 
r —r- u        ß r-, = 1 

cov.- =—^t(fik -m^fjk -mj) 

where ai ander,, are the standard deviation of the ith and jth feature. N is the total 

number of samples and n is the number of features. The correlation matrix is 

symmetric about the major axis. 

The strength of correlation can be indicated by magnitude (absolute value). For 

example, -0.9 is just as strong as 0.9 except the direction. Table 3 shows the 

characterizations of Pearson r. 

Data Range Correlation 

.90 to 1 very high 

.70 to .89 High 

.50 to .69 Moderate 

.30 to .49 low 

.00 to .29 little if any 

Table 3: Characterizations of Pearson r 
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So the Pearson product moment correlation coefficient can be used to measure the 

degree of linear relationship between two variables. The correlation coefficient 

assumes a value between -1 and +1. If one variable tends to increase as the other 

decreases, the correlation coefficient is negative. Conversely, if the two variables tend 

to increase together the correlation coefficient is positive [Minitab 1997]. 

3.1.3 Limitations of the Correlation Tests 

Correlation does not imply causality. A significant correlation does not necessarily 

mean cause and effect. It should be noted that Pearson r computations are sensitive to 

extreme values in the data. 

3.2 t-test 

The t-test assesses whether the means of two groups are statistically different from 

each other. The t-test will be used to help find the most promising features among the 

features introduced in Chapter 2 [Minitab 1997]. 

For example, in Figure 24, there are three different possible outcomes, labeled 

medium, high and low variability. Notice that the differences between the means in 

all three situations are exactly the same. The only thing that differs between these is 

the variability or "spread" of the scores around the means. A small difference 

between means will be hard to detect if there is lots of variability or noise. A large 

difference between means will be easily detectable if variability or noise is low. This 

way of looking at differences between groups is directly related to the signal-to-noise 

metaphor - differences are more apparent when the signal is high and the noise is low 

[Trochim2001]. 
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Figure 24: Deference between means [Trochim 2001] 

There are five factors that contribute to whether the difference between the means of 

two groups can be considered significant: the difference between the means of the 

two groups, the overlapping degree between the groups, the number of subjects in the 

two groups, the alpha level used to test the mean difference (how confident that there 

is a mean difference), and whether a directional (one-tailed) or non-directional (two- 

tailed) hypothesis is being tested [Minitab 1997]. 

There are three types oft-test: paired t-test (correlated t-test), equal variance t-test 

(pooled variance t-test) and unequal variance t-test (separate variance t-test). In this 

study, it is necessary to tell the difference between independent sample means with 

unequal variance. The test statistic t is calculated by Equation (3.2) 

t = 
(xl -x2) (3.2) 

with 
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s,     s2 

nx     n2 

A p-value below 0.05 is generally considered statistically significant, while one of 

0.05 or greater indicates no difference between the groups. 

3.3 Mahalanobis Distance 

An alternative distance measure that is in common use is the Mahalanobis distance. 

This is similar to the Bayesian distance in that it takes into account the shape of the 

covariance matrix of the class model. However, the derivation of the Mahalanobis 

distance formula assumes that the covariance matrices of each class are the same in 

order to simplify the calculations involved. Thus it is valid to use the Mahalanobis 

distance measure if the data for each class are similarly distributed. However, there is 

nothing to prevent its use if they are not. The Mahalanobis distance is defined as: 

df(x) = (x-mi)
,Sp\x-mi) (3.2) 

where d?(x) is the Mahalanobis distance (also called the squared distance) of 

observation x to the center (mean) of group i. mi is the mean value of group i. 

S"1 is the inverse of the variance-covariance matrix of X. A column in X is 
p 

represented by x. Notice, 

df(mj) = d2
J(mi) (3.3) 

This is the Mahalanobis distance between groups i and j. 
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3.4 Discriminant Analysis 

A discriminant analysis is used to classify observations into two or more groups. 

Discirminant analysis can also be used to investigate how variables contribute to 

group separation [Minitab 1997]. 

There are two types of discriminant analysis - linear and quadratic discriminant 

analysis. With linear discriminant analysis, all groups are assumed to have the same 

covariance matrix. Quadratic discrimination does not make this assumption but its 

properties are not as well understood. The linear discriminant analysis with cross- 

validation and prior probabilities is used in this study. 

3.4.1 Linear Discriminant Analysis 

An observation is classified into a group if the Mahalanobis distance of observation to 

the group center (mean) is the minimum. Linear discriminant analysis has the 

property of a symmetric Mahalanobis distance. 

3.4.2 Cross-Validation 

Cross-validation is a technique used to compensate for an optimistic apparent error 

rate. The apparent error rate is the percent of misclassified observations. The cross- 

validation routine works by omitting each observation one at a time, recalculating the 

classification function using the remaining data, and then classifying the omitted 

observation. 

3.4.3 Prior Probabilities 

Sometimes if the prior probabilities are known or can be estimated, discriminant 

analysis can utilize it in calculating the posterior probabilities, or probabilities of 

assigning observations to groups. With the assumption that the data have a normal 

distribution, the linear discriminant function is increased by Info), where ps is the 

44 



prior probability of group i. Because observations are assigned to groups according to 

the smallest generalized distance, the effect is to increase somewhat the posterior 

probabilities for a group with a high prior probability. 

3.5 Performance Analysis 

An approach that provides information about the overall performance of a diagnostic 

system is known as Receiver Operation Characteristic (ROC) analysis. Such curves 

were first applied to assess how well radar equipment in World War II distinguished 

random interference (noise) from signals truly indicative of enemy planes. 

When a diagnosis is made, there are usually two types of errors [Mia 1999]: Type 1 

errors are when samples from Class 1 are assigned to Class 2. Type 2 errors are when 

samples of Class 2 are assigned to Class 1. If the normal cases are called Class 1 and 

the abnormal cases are called Class 2, then the Type 1 error rate is called the False 

Positive Fraction (FPF) and Type 2 error rate is called the False Negative Fraction 

(FNF). Similarly, the percentage of correctly assigned samples in Class 1 is called 

True Negative Fraction (TNF) and the percentage of correctly assigned samples in 

Class 2 is called the True Positive Fraction (FPF). See Figure 25. 

Usually, in ROC analysis, performance of a diagnostic system is described by the 

indices of "sensitivity" and "specificity", where "sensitivity" can be expressed as the 

True Positive Fraction (TPF) and "specificity" by the True Negative Fraction (TNF) 

of a diagnosis. In a complimentary way, the FNF and the FPF can be defined as FNF 

= 1- TPF and FPF =1- TPF, respectively. Due to this dependence, it is only necessary 

to measure one pair of indices. Frequently TPF and FPF are used. 
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Figure 25: The binormal model for ROC analysis [Frederick 2000] 

Figure 26a indicates 10 different decision thresholds, thresholds LI, L2,... LI0. For 

each of these decision thresholds the FP and TP percentages have been computed. 

These 10 combinations (FP, TP) have been plotted in curve a in Figure 27. This 

graphical representation is called ROC curve, which plots the TPF as a function of the 

FPF. 

To show the effect of more or less overlap of the two distributions, in curves b and c 

of Figure 27, the same two hypothetical distributions are used but they are shifted 

closer to each other and farther apart, respectively. The effect of more overlapping 

distributions is seen in ROC curve b and the effect of less overlap is seen in curve c of 

Figure 27. The less the histograms overlap, the better the ROC approaches the ideal 

point of (FP, TP) = (0,100). As curves bow more to the left, they indicate greater 
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accuracy (a higher ratio of true positives to false positives). The more the histograms 

overlap, however, the more the ROC approaches the diagonal line that runs from the 

point (FP, TP) = (0,0) to the point (FP, TP) = (100,100). This straight line would 

signify that the diagnostic test had 50/50 odds of making a correct diagnosis (no 

better than flipping a coin). 

The above example shows that the performance of any decision model is primarily 

determined by the discriminatory power of the features. If the features show too much 

overlap, a different decision threshold does not help. This not only applies to models 

that operate on one feature but also applies to models that use several features at a 

time. Therefore, the principal task in developing a decision model with an optimal 

performance is finding the most discriminating features. 
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Figure 26: Two normal distributions with 10 different decision thresholds LI, L2, 
L10 [ROC 2001] 
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Figure 27: ROC curve [ROC 2001] 

The accuracy is indexed more precisely by the amount of area under the curve, which 

increases as the curves bend to the ideal point of (FP, TP) = (0,100). A rough guide 

for classifying the accuracy of a diagnostic test is the traditional academic point 

system: 

Data Range 

.90-1 

.80 - .89 

.70 - .79 

.60-.69 

.50-.59 

Accuracy of Classification 

Excellent 

Good 

Fair 

Poor 

Fail 

Table 4: Characterizations of Az 
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If the accuracy is acceptable, we can select a threshold for yes/no diagnoses. The goal 

is to choose a threshold that yields a good rate of true positives without generating an 

unacceptable rate of false positives. Each point on the curve represents a specific 

threshold moving from the strictest at the top right to the most lenient at the bottom 

left. Strict thresholds limit false positives at the cost of missing many cases of cancer; 

lenient thresholds maximize discovery of the cases of cancer at a cost of many false 

positives. 

One popular software package for performing ROC curve-fitting and statistical 

analysis is the ROCKIT software developed by a research group led by Charles Metz 

at the University of Chicago, which uses the LABROC4 algorithm [Metz 1998]. 

An example ROC curve drawn by using ROCKIT is shown in Figure 28. It shows the 

performance is 0.7663 ± 0.0659 (area under the ROC curve) by only using a single 

feature - entropy. 
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Figure 28: A sample Receiver Operating Characteristic (ROC) curve 
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Chapter 4 System Implementation 

This chapter describes the procedure for acquiring ultrasound radio frequency (RF) 

data and for composing a pathology image, and the control of the saturation ratio of 

the RF data. Finally, a detailed description of the development and usage of the 

software is given. 

4.1 RF Data Acquire 

Using the linear array transducer, in vitro ultrasound data are acquired from fresh 

radical prostatectomy specimens that are obtained immediately after resection at 

Fletcher Allen Health Care. The whole prostate gland is transported from the 

operating suite to the ultrasound instruments. The specimen is immediately immersed 

in sterile isotonic saline solution in a tank with sound absorbing walls. The prostate is 

oriented so that the plane of the base of the gland is vertical and the posterior 

(peripheral zone) is at the top of the tank. The gland is then scanned using a Diasonics 

Spectra real-time scanner with a 5 MHz center-frequency scanhead. The scan planes 

are parallel to the base of the gland and are taken in the tranverse plane with a 

clamped transducer. The scan planes are taken at 2 mm intervals. The ultrasonic RF 

signal is digitized (8 bits) at 48 MHz using a LeCroy digitizer. Figure 29 shows the 

experimental scan setup. Figure 30 is the enlarged image of the pad and the glue that 

provides a tight contact and an air-free seal between the transducer and the specimen. 

The air-free seal is necessary for the transducer to send the high frequency sound into 

the object unimpeded. 

After the conclusion of the prostate RF data acquisition, RF data from a special 

phantom, whose frequency-dependent attenuation and backscatter properties are 

known, is collected using the same machine settings. These data are used for 

calibration of the prostate RF data. 
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Figure 29: In vitro experimental scan setup 

Figure 30: Pad and glue 
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4.2 Saturated-ratio Control Software 

When the ultrasound radio frequency data are acquired, one problem needs to be 

considered. Because the LeCroy digitizer samples the data in 8 bits, the data range is 

from -128 to 127. If the maximum value of the data is outside of this range, which 

means that data is "saturated", some important information is missed. The saturated- 

ratio is defined as the number of data outside the range of-128 to 127 over the total 

number of the data. Usually the saturated-ratio of "good" data should be pretty close 

to 0%, which means few data is outside the range of-128 to 127. 

An example of saturated RF data appears in Figure 31. The upper image shows the 

ultrasound image of the radio frequency data. The lower image shows one line in the 

radio frequency data set. The saturated-ratio of this example is 10.31%, which means 

more than 10% of the data are outside the range of-128 to 127. Obviously, many 

peaks are cut off and some important information is lost. Thus, the system needs to be 

adjusted. 

It should be noted that it is difficult to determine if the RF data are saturated by 

merely examining the B-mode images. In order to minimize saturation problems, a 

software tool has been developed. The software helps in the adjustment of the 

machine settings that reduce the saturation-ratio and let the data fall into the range of 

-128 to 127. Once the saturation-ratio is pretty close to 0%, the settings of the 

machine are fixed. The result after adjustment is shown in Figure 32. 
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Figure 31: Saturated control - before adjustment 
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4.3 PATH Image Composite 

After ultrasound data acquisition, the prostatectomy specimen is fixed in buffered 

formalin. This process stiffens the tissue so that less deformation occurs during 

sectioning. Next the specimen is sent to a surgical pathologist for examination. The 

gland is sliced into multiple transverse sections with the plane of the sections being 

perpendicular to the posterior surface of the gland. This is simply achieved by placing 

the posterior surface down on the cutting table and cutting downward vertically. 

Ideally, these slices would correspond to the ultrasound image slices. 

After the transverse sections are made in pathology, each section is further divided 

into quarters so that the tissue will fit on a standard microscope slide. The pathologist 

examines the section quarters and all foci of cancer are marked on the glass slide with 

indelible ink. Then the slides (quarter sections) are digitized for reassembly into 

complete sections (also known as "whole mount" sections). 

The glass slides are simply arranged on the tray of a transparency flatbed scanner and 

"scanned" in at a resolution of 200 - 400 dpi. The digitized images are then placed 

into Adobe Photoshop, and the images are "warped" slightly to fit better with each 

other. Warping is necessary since some shrinkage and distortion occurs during the 

sectioning and fixation process. Figure 33 shows the scanning result of four-quarter 

sections with cancer marked. Figure 34 is the result of assembling four-quarter 

sections into a whole slice. 

Since the cancer area was marked with indelible ink on the pathology image by the 

pathologist, this information will be used to find the location of the cancer area in the 

ultrasound image and in the ultrasound RF data set as well. The details can be found 

in 4.4.3. 

56 



1       f 

Figure 33: Pathology quarter sections with CA marked 

4^,'-*&£l^ ,1* 

Figure 34: Quarter sections assembled into whole slice 
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4.4 User Interface Design 

Feature computation software has been developed for the in vitro prostate tissue 

classification project. This MATLAB based software has a Windows graphical user 

interface (GUI). Figure 35 is a screen shot of the GUI. When the user chooses one 

ultrasound image (left image), it will automatically select the corresponding 

pathology image (right image). Then the user draws a ROI on the pathology image 

and the software maps it in the ultrasound RF data set. All of the features introduced 

in Chapter 2 are calculated for the ROI. The result is stored in a database. This section 

will introduce how to build the database, how to load the PATH image for the US 

image automatically, how to locate the ROI between the US and PATH images, as 

well as the usage of this software. 
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Figure 35: Graphic user interface 
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4.4.1 Building Database 

In the development of the software, according to specification, it was necessary to 

store a large amount of different types of information. It was decided to use a 

database to fulfill this requirement. Microsoft Access 2000 was chosen to store the 

information. Software was developed to accomplish the data processing tasks by 

using the database tools provided by MATLAB. 

The first development step was to decide the structure of the database. Generally, 

there are three steps related with the database. First, it is necessary to put some 

information about each case, such as the ultrasound filename of the case, the number 

of slices in the case, the corresponding pathology filename and number, and the 

corresponding phantom filename. Second, when this tool is used to locate the region 

of interest (ROI) inside the radio frequency data, the location and character of each 

ROI needs to be recorded. Third, it is necessary to store the features for each ROI. So 

three tables are needed in the database. The first (patient) stores the information of 

each case, the second (roiinf) saves the ROI information, and the third (feature) saves 

the features for each ROI. The structure of patient and roiinf is listed in Appendix A. 

After building the structure of the database, the connection to MS Access 2000 had to 

be constructed. This can be done via Open Database Connectivity (ODBC) Data 

Source Administrator, which is in the Control Panel (the operating system is Window 

2000). ODBC is a widely accepted application programming interface (API) for 

database access. It is based on the Call-Level Interface (CLI) specifications from 

X/Open and ISO/IEC for database APIs and uses Structured Query Language (SQL) 

as its database access language. 

Once the database and the connection to the database are built, the database is ready 

to be used in the program and to provide the services we needed. 
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4.4.2 Loading PATH Image for US Image Automatically 

When processing the data, the specific ultrasound file for a slice in one case is loaded. 

The corresponding pathology image also needs to be loaded. Most of the time this 

relation is not a simple one to one mapping. Usually, the number of ultrasound slices 

is not the same as that of the pathology images. Also both of these numbers vary with 

the size of the gland. It would be annoying to do the calculation every time the data is 

processed. The strategy to handle this issue is to put these information in the database. 

There is one table in the database called patient, whose structure can be found in 

Table 14. With the help of these information, when one ultrasound file is loaded, the 

corresponding pathology image can be calculated using following equation: 

j = round(ix^-) (4.1) 
n.. 

where i and j are the position in the ultrasound and pathology slices. np and nu are the 

numbers of ultrasound and pathology slices respectively. 

For example, if 15 slices were taken using ultrasound and only 12 were taken in 

pathology. Once the third ultrasound slice is chosen, according the above equation, 

the second slice in the pathology images will be loaded. The spacing between slices is 

2mm for ultrasound and 15/12x2mm=2.5mm for pathology. The third ultrasound 

slice is at a position within the gland of 3x2=6mm. The second pathology slice is at a 

position of 2x2.5=5mm within the gland. 

Since the position of the slice in pathology and ultrasound is not the same, this 

introduces uncertainty into the exact pathology slice with which the ultrasound data 

should be correlated. The solution to this problem is to only use cancer foci that are 

large enough to appear on several pathology slices. This reduces the possibility that 
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ultrasound data coming from normal prostate tissue is mistakenly used as cancer in 

the data processing. 

4.4.3 Locating the ROI Between the US and the PATH Image 

When one ROI is specified in the pathology image, the corresponding ultrasound data 

needs to be found. The features for that ROI are then calculated. The following is the 

details for how to map the ROI between ultrasound and pathology images. 

First, the boundary of the prostate in the pathology image needs to be specified. The 

original size of the pathology image is 600 x 600. This is shown in upper right of 

Figure 36. When the pathology image is loaded into the GUI, it will be resized to 256 

x 400 (the size of the image axes) (upper middle). Then the user will use the mouse to 

draw a box (shown in long dash dot) inside the image to find the boundary of the 

gland, which is represented by the red ellipse. The boundary of the prostate will be 

resized to 256 x 400 (upper left). 

Second, it is necessary to specify the boundary of prostate in ultrasound image. The 

original size of ultrasound image matrix is 256 x 320 (lower right). Due to the size of 

transducer, if the size of gland is larger than the transducer, the boundary of the gland 

will be outside of the image. So the tool should allow the user to draw a box outside 

of the original image region when indicating the boundary of the prostate,. To solve 

this problem, the size of the image matrix was increased to 308 x 384 by adding some 

zeroes around the original image matrix (lower middle). Then the image is resized to 

256 x 400. With the help of radiologist, the boundary of the gland in the ultrasound 

image is contained by a box using long dash dot. The boundary of the gland outside 

of the original image is marked by red dashs. 

Since the boundaries of gland are marked on both the ultrasound and the pathology 

image, the next step is to draw the ROI on the pathology image and according to the 
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geometric relation between them to find the corresponding position in ultrasound data 

set. All of these relations are shown in Figure 36. 

256 
256 

600 

US 

600 

320 

Figure 36: Mapping the ROI between pathology and ultrasound images 
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4.4.4 GUI Usage 

Before using the software to compute the tissue features, it is necessary to build the 

ODBC connection to the Microsoft Access 2000 and input the needed information 

into the database, which is described in 4.4.1. 

First, one ultrasound slice file and the corresponding pathology image are loaded. The 

software automatically turns the RF data into an ultrasound image and loads the right 

pathology image according to the information in the database. Notice that the position 

of scanning and cutting the prostate are in opposite directions. The pathology image 

needs to be rotated 180 degree to get the same direction as the scanning image. 

Second, find the boundary of the prostate on both images, map the region of interest 

to the ultrasound data set, and save all the position information in the database. 

Then with the help of the position information, all of the features are calculated for 

each ROI. The results are saved in the database. 

The flowchart of the usage of the GUI is shown in Appendix B. 
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Chapter 5: Results 

The parameters described in Chapter 2 were extracted from the RF ultrasound signals 

by using the tool introduced in Chapter 4. The evaluation methods described in 

Chapter 3 were used to analyze those parameters. The results ofthat analysis are 

presented in this chapter. First, the case material and features are summarized. Then, 

the results of feature analysis are reported. 

5.1 Case Material 

78 radical prostatectomy specimens have been studied so far. Unfortunately not all of 

the data from the specimens are useful. Many of the samples have only microscopic 

(l-2mm) cancer. Some of the data were unusable due to technical problems during 

acquisition. The current preliminary analysis includes: 

Categories Number of ROIs 

Cancer 36 (from 12 cancer patients) 

Benign 19 (from benign regions) 

Table 5: Case materials 

5.2 Features Calculated 

The parameters listed in Table 6 were extracted from all of the ROIs listed in Table 5. 

These features include the raw RF features, which manifest the microscopic 

information on scatter size and acoustic concentration that is not visually accessible in 
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images, and the textures features from the co-occurrence matrix, which carry the 

information on macroscopic tissue architecture. The detail of each feature has been 

introduced in Chapter 2. 

Groups Features 

RF 

Backscatter vs. Frequency Slope 

Backscatter Zero Frequency Intercept 

Backscatter Mid Band Value 

Image Statistics Signal to Noise Ratio 

Image Texture 

(Co-occurrence) 

Angular Second Moment 

Entropy 

Contrast 

Correlation 

Table 6: List of features 

5.3 Feature Analysis 

First, the ability of each feature to separate the two groups was assessed by using 

Student's t-test. Then, to identify the combination of features that most efficiently 

separated normal from cancer with lowest error rates, a stepwise discriminate analysis 

was employed. 

5.3.1 t-test 

The t-test assesses whether the means of two groups are statistically different from 

each other. Table 7 provides the results for the mean and standard deviation (s.d.) of 

the features for the two groups listed in Table 5. It is usual to say that p-levels < 0.05 

are statistically significant. The p-level of ENT is the smallest one, which is 0.00016 
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and far less than 0.05. It indicates that the mean of ENT is significantly different 

between benign and cancer regions. This is a positive sign that ENT is one of the best 

features for separating the two groups. 

Feature CA Mean (±s.d.) Benign Mean (±s.d.) t-test p value 

Slope 0.778±.348 dB/MHz .5881.326 0.05224 

Intercept -11.81±2.19dB -10.4112.20 0.03160 

Mid Band -7.88±1.48dB -7.4211.57 0.29304 

SNR 1.621.38 1.361.35 0.01583 

ASM .00991.018 .00291.0026 0.03089 

ENT -5.4+1.04 -6.421.78 0.00016 

CON 4111±3872 206611049 0.00482 

COR -.74691.115 -.80431.0788 0.03420 

Table 7: Results for the mean, standard deviation and t-test 

The results are also plotted in the bar chart with error bars in Figure 37. The height of 

a bar represents the mean value for that group. The error bar shows the 95% 

confidence limits for each mean. Obviously, ENT is the most significant feature. 
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Figure 37: Bar chart of each feature 
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5.3.2 Correlation 

A correlation matrix, as described in Chapter 3, was computed for the set of eight 

features. The correlation matrix is symmetric about the major axis, so the upper right 

portion of the matrix, which is not shown, is a mirror image of the lower left portion 

of the matrix. A positive coefficient indicates the values of variable A vary in the 

same direction as variable B. A negative coefficient indicates the values of variable A 

and variable B vary in opposite directions. 

SNR Slope Intercept ENT ASM CON COR Midband 

SNR — 

Slope .032 

.816 

— 

Intercept -.064 

.641 

-.767 

.000 

— 

ENT .377 

.005 

.088 

.522 

-.281 

.037 

— 

ASM .349 

.009 

.074 

.592 

-.109 

.430 

.716 

.000 

  

CON .595 

.000 

.069 

.069 

-.141 

.306 

.639 

.000 

.852 

.000 

COR .776 

.000 

.045 

.746 

-.155 

.258 

.284 

.035 

.094 

.493 

.498 

.000 

Midband -.138 

.316 

-.025 

.858 

.647 

.000 

-.350 

.009 

-.103 

.453 

-.183 

.180 

-.242 

.075 

Cell Contents: Pearson correlation 

P-Value 

Table 8: Correlation matrix of the eight candidate features 
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From Chapter 3 we know that when r is between 0.70 and 0.89, it indicates a high 

correlation. Using a correlation value of 0.70 as the threshold for redundant features, 

there are four pairs of features that meet that criterion. From the table above, we 

know the ENT and ASM features have a correlation coefficient of 0.716; the slope 

and intercept features have a correlation coefficient of-0.767; the CON and ASM 

features have a correlation coefficient of 0.852; the COR and SNR features have a 

correlation coefficient of 0.776. So some features can be eliminated without 

significant loss of information. The decision of which feature(s) to be eliminated can 

be aided by computing the Mahalanobis distance for each feature. 

5.3.3 Mahalanobis Distance 

The Mahalanobis distance is a measure of the separation between the means of a 

feature computed for the two classes. While a low value does not necessarily mean a 

feature provides no separation between the two classes (separation may still be 

provided by using a quadratic or other more complex classifiers.). A high value is a 

good indication that the feature will provide good separation. The Mahalanobis 

distance, as described in Chapter 3, is presented in Table 9 for each of the eight 

features. 

Feature Mahalanobis Distance 

SNR 0.4855 

Intercept 0.4028 

Slope 0.3097 

Mid-band 0.0949 

ENT 1.1430 

COR 0.3036 

CON 0.4073 

ASM 0.2173 

Table 9: Mahalanobis distance of each of the eight features 
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Of the four pairs of features identified as having a high correlation, the ENT feature 

has the largest Mahalanobis distance. The feature ASM, highly correlated with ENT, 

is eliminated from the analysis. The other features are retained for further analysis. 

This leaves seven features from which to select feature combinations that perform 

well. 

The Mahalanobis distance for each of the two-feature combinations is computed in 

Table 10. Notice that only the pairs including feature ENT have a value larger or 

equal to the value of 1.143. All of the Mahalanobis distances of the other two-feature 

combinations are less than 1.143, which also means their classification performances 

are not better than using the signal feature ENT. Since the Mahalanobis distance of 

ENT vs. midband and ENT vs. CON is almost the same as 1.143, and ENT vs. ASM 

has a high correlation, the most promising pairs of two-feature combinations are ENT 

vs. SNR, ENT vs. intercept, ENT vs. slope and ENT vs. COR. 

We added one more feature to the above promising pairs to see if any improvement 

introduced. The Mahalanobis distance of those combinations are shown in Table 11. 

The largest Mahalanobis distance value is generated by the combination of ENT, 

slope and SNR, which is 1.700. 
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SNR Intercept Slope Midband ENT COR CON ASM 

SNR — 

Intercept 0.918 — 

Slope 0.840 0.418* — 

Midband 0.544 0.419 0.410 — 

ENT 1.319 1.352 1.498 1.144 — 

COR 0.487* 0.651 0.628 0.342 1.266 — 

CON 0.577 0.765 0.723 0.454 1.143 .492 — 

ASM 0.558 0.594 0.518 0.493 1.315* .501 .426* — 

* indicates the two il ems have a high correlation 

Table 10: Mahalanobis distance of two features combination 

SNR Intercept Slope Midband COR CON ASM 

ENT&SNR — 
* 

ENT&Intercept 1.564 — 
* 

ENT&Slope 1.700 1.498* — 
* 

ENT&Midband 1.321 1.498 1.500 — 
* 

ENT&COR 1.323* 1.459 1.629 1.275 — 
* 

ENT&CON 1.377 1.353 1.499 1.144 1.292 — * 

* indicates the tw< 3 items ai nong the cc )mbinati< sn have a hi igh corre lation 

Table 11: Mahalanobis distance of three features combination 
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5.4 Classification Results 

The linear discriminant analysis with cross validation are used to classify 

observations into two groups. This analysis will use the "leave one out" method 

[Lachenbruch, 1968] and a linear Bayers classifier to generate 2x2 contingency 

tables at multiple arbitrary decision threshold levels for cancer vs. each of the benign 

cases. These results were used to compute sensitivities and specificities and to 

produce an ROC curve with the help of ROCKIT software. The classification 

performance was measured by the area under the ROC curve (Az). 

Feature Combination Performance Az± s.d. 

ENT SNR 0.8219 ± 0.0583 

ENT Intercept 0.8114 ±0.0708 

ENT Slope 0.8090 ± 0.0660 

ENT Midband 0.7648 ± 0.07681 

ENT COR 0.8386 ± 0.0567 

ENT CON 0.7778 ± 0.0675 

Table 12: Performance of the two-feature combinations 

The classification performance of the six two-feature combinations discussed above is 

shown in Table 12. The corresponding ROC curves are shown in Figure 38. 

When Az is between 0.80 and 0.89, the accuracy of the classification is good. The 

threshold level was set at Az > 0.82 to identify feature combinations that yielded good 

classification performance. No single feature provided classification performance 

above this level. The best classification performance achieved by single feature is 

0.77 ± 0.07 that was provided by ENT as shown in Figure 28. There are only two 
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Conventional Binormal ROC Curves 

FPF 

Figure 38: ROC curves of two-feature combination 

two-feature combinations that provided classification performance of Az > 0.82. They 

are ENT vs. SNR and ENT vs. COR. The combination of ENT and COR provided the 

best classification performance among two-feature combinations, which is 0.84 ± 

0.06. The scatter plots of the best two-feature combinations are also shown in Figure 

39 and Figure 40 separately. 
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Feature Combination Performance Az ± s.d. 

ENT  SNR  Intercept 0.8256 ±0.0612 

ENT  SNR  Slope 0.8541 ± 0.0542 

ENT   SNR  Midband 0.7814 ±0.0628 

ENT   SNR  CON 0.8015 ± 0.0623 

ENT  Intercept  Midband 0.7937 ± 0.0695 

ENT   Intercept  COR 0.7908 ± 0.0646 

ENT  Intercept  CON 0.7796 ± 0.0679 

ENT   Slope  Midband 0.7755 ±0.0713 

ENT   Slope  COR 0.8144 ±0.0604 

ENT   Slope  CON 0.7926 ± 0.0693 

ENT  Midband  COR 0.7444 ± 0.0693 

ENT  Midband   CON 0.7476 ± 0.0677 

ENT   COR  CON 0.8071 ± 0.0586 

Table 13: Performance of the three-feature combinations 

The performance of all the three-feature combinations was shown in Table 13. There 

are only two three-feature combinations that provided classification performance of 

Az > 0.82. The combination of ENT, SNR and slope provids the best classification 

performance among three-feature combinations, which is 0.85 ± 0.05. Notice that this 

combination also has the largest Mahalanobis distance (Table 11). The scatter plots of 

the two best three-feature combinations are also shown in Figure 42 and Figure 43 

separately. 
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Conventional Binormal ROC Curves 

a=1.49 b=1.00 Az=0.8540 ENT & SNR & Slope 

 a=1.44 b=1.16 Az=0.8256 ENT & SNR & Intercept 

-a=1.25 b=0.98 Az=0.8144 ENT & Slope & COR 

 a=1.04 b=0.66 Az=0.8070 ENT & COR & CON 

 a=1.20 b=1.01 Az=0.8015 ENT & SNR & CON 

0.4 0.6 0.8 

FPF 

Figure 41: ROC curves of three-feature combination 
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Figure 42: 3D scatter plot of ENT, SNR and slope 
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Figure 43: 3D scatter plot of ENT, SNR and intercept 
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5.5 Parametric Image 

In addition to the development of algorithms for the computation of features from a 

user defined region of interest, some effort has been directed at developing software 

to automatically calculate features from multiple regions of interest over an entire RF 

data set (image) in order to produce a parametric image for each slice corresponding 

to the B-mode image. A preliminary version of the software has been completed and 

some initial parametric images have been produced (Figure 44). 

When we choose the size of the region of interest (ROI), there will be the classical 

fundamental trade-off between resolution and sensitivity. That is, the small ROIs 

mean great resolution - but very great noise (no sensitivity). And large ROIs mean 

very good sensitivity, but very poor resolution. To generate the parametric image, we 

will scan the ROI throughout each image. This can be done in two ways: 

(1) "Scroll" the ROI in an overlapping way - that is, analyze the first ROI starting 

from one corner; then move over some fraction of an ROI and analyze the new ROI - 

which will overlap the first one. Continue on until cover the whole image. The 

advantage is that it leads to nice parametric images. 

(2) "Scroll" the ROI in a non-overlapping way. It is the same as above, but without 

overlapping. This will give independent ROIs. But the disadvantage is: if we want to 

make a parametric image of the results, it will be "blocky". 

In our situation, relatively large subregions must be used to reduce the variance of the 

calculated slope values and use of overlapping regions is a method of increasing the 

apparent spatial resolution of the image when larger subregions are necessary. After 

choosing the size of the ROI, it is possible to calculate the desired parameters for the 

ROI and to "scroll" the ROI in a specific overlapping or non-overlapping (0% 
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overlapping) way to cover the whole image to get a multi-dimensional parametric 

matrix. Then the parametric matrix is transferred into grayscale by adding an 

appropriate scaling factor and shown as a grayscale image. The images shown in 

Figure 44 demonstrate the higher level of detail afforded by using overlapping sub- 

regions. 

The intend is to display parametric images during the development process to confirm 

proper operation of the software. However, in the end, the parametric data set will be 

combined with elastographic and clinical probability data to produce a single image 

in which overall probability of cancer (based on all features) is displayed for clinical 

use. It is likely that the experience gained in producing these intermediate parametric 

images will help to better display the final result - a parametric image where cancer 

probability is the parameter. 
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0% overlap 

50% overlap 

91.67% overlap 

25% overlap 

75% overlap 

B-mode image 

Figure 44: Parametric image of the prostate (case 48, slice 11) using backscatter slope 

feature with 5 mm x 12 RF vector regions of interest (ROI) with various degrees of 

overlap of the regions of interest. 
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Chapter 6 Conclusions 

6.1 Summary 

This research is part of the project "Combining Clinical, Sonographic, and 

Elastographic Features to Improve the Detection of Prostate Cancer" (Award 

Number: DAMD 17-99-1-1007) and focused on the study of quantitative sonographic 

tissue characterization. 

First, the features that will be used to help distinguish cancers from benign tissue are 

selected. RF based and texture features are chosen because they stand for the 

microscopic and macroscopic tissue architecture information respectively. 

Also, the software for computation of ultrasound based tissue features has been 

developed. The software allows the user to locate cancers on ultrasound images by 

comparison with corresponding pathology slices. With the help of this tool, the ROIs 

are marked and the position information of each ROI is stored in the database. This is 

an interactive process. Then the texture and RF features are calculated for the ROI 

(cancer or benign) and the results are saved in database. 

Signal to noise ratios have also been calculated for the tissue mimicking phantom. It 

should exhibit a ju/a value very close to 1.91. Our result demonstrates that sub- 

regions calculated from within the phantom do in fact exhibit a ju/a close to 1.91. 

The average value is 1.893. 

Then the next step is to search for the best individual and best combinations of 

features for discriminating cancerous from noncancerous tissue based on ROC 

analysis. Our results show that the best individual feature is entropy. The best two- 
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feature combination is entropy and correlation. And the best three-feature 

combination is entropy, slope and signal to noise ratio. The classification 

performance is 0.84 ± 0.06 and 0.85 ± 0.05 (area under receiver operating 

characteristic curve) respectively. The preliminary results show RF and envelope- 

detected signal analyses are diagnostically useful to discriminate prostate tissue. 

6.2 Possible Future Work 

In the future, this research can be extended in several different directions. First, much 

more data is needed to enhance the robustness of the techniques and the estimation of 

their performance. Next, exploration of different features might prove to be more 

successful. Elastography results and PSA information will be incorporated in the 

software. It would be interesting to explore the ability of more complex classifiers 

(such as quadratic, k-nearest neighbor, and neural network classifiers) of 

distinguishing normal tissues from cases of prostate cancer. 

One improvement can be made by using a constant size of ROI to eliminate bias in 

statistical features due to ROI size. Because the larger ROI sizes lead to a reduction in 

measured variance. One example is shown in Table 16. It may have affected the 

clinical results since the size of cancer ROIs tended to be small and that of benign 

ROIs tended to be larger. The solution to this problem is to divide the larger ROI into 

several sub-regions and then average the results. 

And the possibility would be to scan the prostate specimens with curved array and to 

develop a classifier for that data. 
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Appendix A: Database Structure 

V 

Field Name Data Type 

PatientID Number 

USFileName Number 

USFileNumber Number 

PATHFileName Number 

PATHFileNumber Number 

Phantom Number 

StartingDepth Number 

StoppingDepth Number 

Table 14: Table structure - patient 

Field Name Data Type 

Status Number 

USSliceFileName Number 

ROINum Number 

ROICharacter Text 

ROIX Number 

ROIY Number 

ROIWidth Number 

ROIHeight Number 

Table 15: Table structure - roilnf 
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Appendix B: Flowchart of GUI Usage 

Start 

Load US and PATH Image 

H 
Boundary of gland 
on PATH 

1 
Boundary of gland 
onUS 

Map ROI between 
PATH and US 

Save ROI Information 

Loop over 
each ROI 

Computer features 

Stop 

Figure 45: Flowchart of GUI usage 
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V 

Appendix C: Bias Caused by ROI Size 

To demonstrate the bias introduced by ROI size, SNR is calculated for different sizes 

of ROIs. There are 12 ROIs in each size. Notice that the larger ROIs contain the 

smaller ones. The result shows that the larger ROI has lower variance. 

ROI Size S.D. 

20x25 0.250 

30x38 0.132 

35x44 0.096 

40x50 0.085 

45x56 0.084 

Table 16: Bias caused by ROI size 
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Appendix D: Backscatter Coefficient of Reference Phantom 
Frequency (Hz) Backscatter Coefficient 
3.125000e06 2.1612715E-04 
3.222656e06 2.4848658E-04 
3.320313e06 2.7688060E-04 
3.417969e06 3.0678869E-04 
3.515625e06 3.5969596E-04 
3.613281e06 4.3010002E-04 
3.710938e06 4.287801OE-04 
3.808594e06 4.7800399E-04 
3.906250e06 6.4783212E-04 
4.003906e06 5.2049971E-04 
4.101563e06 7.9972047E-04 
4.199219e06 6.8410835E-04 
4.296875e06 7.8617007E-04 
4.39453 le06 1.0446353E-03 
4.492188e06 9.0188358E-04 
4.589844e06 1.3031829E-03 
4.687500e06 1.2099128E-03 
4.785156e06 1.1688722E-03 
4.882813e06 1.4217630E-03 
4.980469e06 1.2657929E-03 
5.078125e06 1.5340993E-03 
5.17578le06 1.6429626E-03 
5.273438e06 1.6357866E-03 
5.371094e06 2.2317523E-03 
5.468750e06 2.0040637E-03 
5.566406e06 2.0739918E-03 
5.664063e06 2.3677654E-03 
5.761719e06 2.2838814E-03 
5.859375e06 2.6224537E-03 
5.957031e06 2.8915587E-03 
6.054688e06 3.0219131E-03 
6.152344e06 3.4578224E-03 
6.250000e06 3.2285405E-03 
6.347656e06 3.4586722E-03 
6.445313e06 4.0386640E-03 
6.542969e06 3.9208517E-03 
6.640625e06 3.9382731E-03 
6.738281e06 4.0659769E-03 
6.835938e06 3.9548110E-03 
6.933594e06 4.0240278E-03 
7.031250e06 4.4389609E-03 
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Appendix E: Phase Shifting with the Hubert Transform 

h{t)= 
M 

H(f) = -jsgn(f)      where sgn(/) = 

-1, /<o 
0, / = 0 

1, />o 

A. A cosine was transformed into a sine: 

x, (t) = cos w0t 

x, (0 = *, (0 ® Ä(0 o X, (/) = X, (/)//(/) 

*i (/) = * (<W - w0) + <W + w0))#(/) 

= 7t(-jS(24 -wQ) + jS(2nf + w0)) 

= ^(^(2^ + w0)-^(2^"-w0)) 

;r 
T(S(2nf - w0) -Ö(27tf + w0)) <=> x, (0 = sin w0t 

B. A sine was transformed into a minus cosine: 

x2 (t) = sin wQt 

x2 (t) = *2 (0 ® Ä(0 o 12 (/) = *2 (/)//(/) 

# 
x1 (J) = -A8V4 - w0) - <W+w0))//(/) 

#■ 

= ±{-jS{2jtf-M>0)-jS<W + y»0)) 

-7t(ö(27f + w0) + <?(2;zf - w0)) o Jc2 (0 = - cos w0 (0 
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